An efficient electro-thermo-optical model for vectorial and 3D VCSEL simulation

A model to simulate Vertical-Cavity Surface-Emitting Laser (VCSEL) operation above threshold is presented. The power - injected current (PI) curves are computed accounting for mode competition arising from spatial hole-burning and temperature profiles. The latter affect many laser parameters, such as the gain spectra and the optical modes, which change their shapes and wavelengths during operation. This comprehensive model aims to describe the details of VCSEL operation above threshold, in a non-circularly symmetric geometries, preserving at the same time computational efficiency. The optical treatment is vectorial, using the in-house developed VELM code. The model is based on a solution of the dynamical equations for field-carrier interactions. Similarly to the more mature vectorial optical treatment, the numerical efficiency is achieved by expanding in proper basis of simple and analytical functions all the involved 3D variables: carrier densities, temperature and optical fields.

[1]  Karl Hess,et al.  Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers , 2003 .

[2]  H. Casey,et al.  Heterostructure lasers. Part A. Fundamental principles , 1978 .

[3]  T. H. Gfroerer,et al.  Temperature dependence of nonradiative recombination in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates , 2003 .

[4]  F. Rinaldi,et al.  VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing , 2005, IEEE Photonics Technology Letters.

[5]  S. Balle,et al.  Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects , 2002 .

[6]  R. Michalzik,et al.  Theoretical-Experimental Study of the Vectorial Modal Properties of Polarization-Stable Multimode Grating VCSELs , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Ingo Fischer,et al.  Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects. , 1999, Optics express.

[8]  P. Meissner,et al.  Modal Properties of Long-Wavelength Tunable MEMS-VCSELs With Curved Mirrors: Comparison of Experiment and Modeling , 2008, IEEE Journal of Quantum Electronics.

[9]  H. J. Unold,et al.  Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory , 2003 .

[10]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[11]  Pierluigi Debernardi,et al.  Features of vectorial modes in phase-coupled VCSEL arrays: experiments and theory , 2003 .

[12]  Gian Paolo Bava,et al.  Quantum-Well Nonlinear Optical Response, , 1994 .

[13]  Zsolt Puskás,et al.  Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers , 2006 .

[14]  Eoin P. O'Reilly,et al.  Band-structure engineering in strained semiconductor lasers , 1994 .

[15]  F. Rinaldi,et al.  Hot-cavity model for non-circular VCSELs , 2008, 2008 IEEE 21st International Semiconductor Laser Conference.

[16]  Wolfgang Fichtner,et al.  A comprehensive VCSEL device simulator , 2003 .

[17]  R. Michalzik,et al.  Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Johan S. Gustavsson,et al.  Numerical optimization of the single fundamental mode output from a surface modified vertical-cavity surface-emitting laser , 2001 .

[19]  John G. McInerney,et al.  Transient temperature response of vertical-cavity surface-emitting semiconductor lasers , 1995 .

[20]  Peter A. Andrekson,et al.  Effect of thermionic electron emission from the active layer on the internal quantum efficiency of InGaAsP lasers operating at 1.3 /spl mu/m , 1994 .

[21]  Pierluigi Debernardi,et al.  Coupled mode theory: a powerful tool for analyzing complex VCSELs and designing advanced device features , 2003 .

[22]  J.A. Hudgings,et al.  Temperature Profiling of VCSELs by Thermoreflectance Microscopy , 2007, IEEE Photonics Technology Letters.

[23]  L. Register,et al.  Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.

[24]  Siu Fung Yu,et al.  Dynamic behavior of vertical-cavity surface-emitting lasers , 1996 .

[25]  R. Baets,et al.  Comparison of optical VCSEL models on the simulation of oxide-confined devices , 2001 .

[26]  P. Debernardi,et al.  Spontaneous emission in semiconductor microcavity post lasers , 1998 .

[27]  Pierluigi Debernardi,et al.  Quantum noise in vertical-cavity surface-emitting lasers with polarization competition , 1999 .

[28]  Ingo Fischer,et al.  Transverse modes in thermally detuned oxide confined vertical cavity surface emitting lasers , 2001 .

[29]  R. E. Hayes,et al.  Optoelectronic device simulation of Bragg reflectors and their influence on surface-emitting laser characteristics , 1998 .

[30]  Marek Osinski,et al.  III: Thermal Properties of Vertical-Cavity Surface-Emitting Semiconductor Lasers , 1998 .

[31]  K. A. Shore,et al.  Statistics of transverse mode turn-on dynamics in VCSELs , 1997 .

[32]  Marek Osinski,et al.  Multilayer analysis of anisotropic heat flux in vertical cavity-surface emitting lasers with quarter-wave semiconducting mirrors , 1998 .

[33]  Joel Jacquet,et al.  Numerical modeling of undercut ridge VCSELs designed for CW operation at 1.3 /spl mu/m: design optimization , 1997 .

[34]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .

[35]  F. Rinaldi,et al.  Surface Relief Versus Standard VCSELs: A Comparison Between Experimental and Hot-Cavity Model Results , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Johannes Ostermann,et al.  High-performance single fundamental mode AlGaAs VCSELs with mode-selective mirror reflectivities , 2007 .

[37]  Jörgen Bengtsson,et al.  A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers , 2002 .

[38]  Sung-Mo Kang,et al.  A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .

[39]  Daniel Erni,et al.  VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model , 2003 .

[40]  P. Debernardi,et al.  HOT-VELM: A Comprehensive and Efficient Code for Fully Vectorial and 3-D Hot-Cavity VCSEL Simulation , 2009, IEEE Journal of Quantum Electronics.

[41]  Pierluigi Debernardi,et al.  Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers , 2001 .

[42]  Ingo Fischer,et al.  Influence of anisotropies on transverse modes in oxide-confined VCSELs , 2002 .