Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering

[1]  V. Vandelinder,et al.  Continuous throughput and long-term observation of single-molecule FRET without immobilization , 2014, Nature Methods.

[2]  S. Jockusch,et al.  Ultra-stable organic fluorophores for single-molecule research. , 2014, Chemical Society reviews.

[3]  T. Ha,et al.  Single molecule analysis of Thermus thermophilus SSB protein dynamics on single-stranded DNA , 2013, Nucleic acids research.

[4]  L. DeVeaux,et al.  The Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance , 2013, PloS one.

[5]  Yuta Suzuki,et al.  Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence , 2013, Scientific Reports.

[6]  Peter E. Wright,et al.  Modulation of allostery by protein intrinsic disorder , 2013, Nature.

[7]  Nam Ki Lee,et al.  Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking , 2013, Proceedings of the National Academy of Sciences.

[8]  Clive R. Bagshaw,et al.  Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy , 2013, Nucleic acids research.

[9]  Quan Wang,et al.  Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. , 2012, Accounts of chemical research.

[10]  T. Komatsuzaki,et al.  Long-term observation of fluorescence of free single molecules to explore protein-folding energy landscapes. , 2012, Journal of the American Chemical Society.

[11]  J. Keck,et al.  Structure and Cellular Dynamics of Deinococcus radiodurans Single-stranded DNA (ssDNA)-binding Protein (SSB)-DNA Complexes* , 2012, The Journal of Biological Chemistry.

[12]  Nam Ki Lee,et al.  Solution single‐vesicle assay reveals PIP2‐mediated sequential actions of synaptotagmin‐1 on SNAREs , 2012, The EMBO journal.

[13]  Taekjip Ha,et al.  Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. , 2012, Annual review of physical chemistry.

[14]  Volodymyr Kudryavtsev,et al.  Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  Kevin J. McHale,et al.  Single-Molecule Fluorescence Experiments Determine Protein Folding Transition Path Times , 2012, Science.

[16]  Direct characterization of protein oligomers and their quaternary structures by single-molecule FRET. , 2012, Chemical communications.

[17]  T. Ha,et al.  SSB Functions as a Sliding Platform that Migrates on DNA via Reptation , 2011, Cell.

[18]  Yusdi Santoso,et al.  Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. , 2011, Biophysical journal.

[19]  Ron R Lin,et al.  High-throughput single-molecule optofluidic analysis , 2011, Nature Methods.

[20]  V. Muñoz,et al.  A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy , 2011, Nature Methods.

[21]  C. Ban,et al.  MutS Switches Between Two Fundamentally Distinct Clamps during Mismatch Repair , 2010, Nature Structural &Molecular Biology.

[22]  David Rueda,et al.  Single-molecule FRET of protein-nucleic acid and protein-protein complexes: surface passivation and immobilization. , 2010, Methods.

[23]  A. Kozlov,et al.  Binding of the dimeric Deinococcus radiodurans single-stranded DNA binding protein to single-stranded DNA. , 2010, Biochemistry.

[24]  Yusdi Santoso,et al.  Characterizing single-molecule FRET dynamics with probability distribution analysis. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  W. E. Moerner,et al.  Watching conformational- and photo-dynamics of single fluorescent proteins in solution , 2010, Nature chemistry.

[26]  Ivan Rech,et al.  High-throughput multispot single-molecule spectroscopy , 2010, BiOS.

[27]  Nils G Walter,et al.  Provided for Non-commercial Research and Educational Use Only. Not for Reproduction, Distribution or Commercial Use. Analysis of Complex Single-molecule Fret Time Trajectories Author's Personal Copy , 2022 .

[28]  J. Torella,et al.  Conformational transitions in DNA polymerase I revealed by single-molecule FRET , 2009, Proceedings of the National Academy of Sciences.

[29]  T. Ha,et al.  SSB diffusion on single stranded DNA stimulates RecA filament formation , 2009, Nature.

[30]  Chris H Wiggins,et al.  Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. , 2009, Biophysical journal.

[31]  Michael Börsch,et al.  36° step size of proton‐driven c‐ring rotation in FoF1‐ATP synthase , 2009, The EMBO journal.

[32]  T. Ha,et al.  SSB protein diffusion on single-stranded DNA stimulates RecA filament formation , 2009, Nature.

[33]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[34]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[35]  Mark A. Wilson,et al.  Intrinsic motions along an enzymatic reaction trajectory , 2007, Nature.

[36]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[37]  Suren Felekyan,et al.  Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. , 2007, The journal of physical chemistry. B.

[38]  Gerald R. Smith,et al.  Single Holliday Junctions Are Intermediates of Meiotic Recombination , 2006, Cell.

[39]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[40]  Shimon Weiss,et al.  Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. , 2006, The journal of physical chemistry. B.

[41]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[42]  C. Urbanke,et al.  Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization , 2005, Nucleic acids research.

[43]  Taekjip Ha,et al.  Single-molecule three-color FRET. , 2004, Biophysical journal.

[44]  J. Keck,et al.  Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Nam Ki Lee,et al.  Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  H. Grubmüller,et al.  Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  X. Xie,et al.  Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer , 2003, Science.

[48]  E. Rhoades,et al.  Watching proteins fold one molecule at a time , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. S. Goody,et al.  Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Lilley,et al.  Structural dynamics of individual Holliday junctions , 2003, Nature Structural Biology.

[51]  W. Eaton,et al.  Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy , 2002, Nature.

[52]  Michael Börsch,et al.  Stepwise rotation of the γ‐subunit of EF0F1‐ATP synthase observed by intramolecular single‐molecule fluorescence resonance energy transfer 1 , 2002 .

[53]  Michael Börsch,et al.  Stepwise rotation of the gamma-subunit of EF(0)F(1)-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. , 2002, FEBS letters.

[54]  R. Hochstrasser,et al.  Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Thomas Baukrowitz,et al.  Gating of Ca2+-Activated K+ Channels Controls Fast Inhibitory Synaptic Transmission at Auditory Outer Hair Cells , 2000, Neuron.

[56]  M Dahan,et al.  Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[58]  W. B. Caldwell,et al.  Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[60]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[61]  T. Lohman,et al.  Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. , 1994, Annual review of biochemistry.