An improved Gregory-like method for 1-D quadrature
暂无分享,去创建一个
[1] P. H. Powell. A Letter to J. A. , 1967, English Journal.
[2] Lloyd N. Trefethen,et al. The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..
[3] Bengt Fornberg,et al. Solving PDEs with radial basis functions * , 2015, Acta Numerica.
[4] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[5] Bengt Fornberg,et al. A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.
[6] G. Pólya,et al. Über die Konvergenz von Quadraturverfahren , 1933 .
[7] Bengt Fornberg,et al. On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..
[8] H. Brunner,et al. The numerical solution of Volterra equations , 1988 .
[9] Károly Jordán. Calculus of finite differences , 1951 .
[10] Johan M. De Villiers,et al. Gregory type quadrature based on quadratic nodal spline interpolation , 2000, Numerische Mathematik.
[11] E. N.,et al. The Calculus of Finite Differences , 1934, Nature.
[12] Bengt Fornberg,et al. Numerical quadrature over smooth surfaces with boundaries , 2018, J. Comput. Phys..
[13] Gregory's Method for Numerical Integration , 1972 .
[14] Lloyd N. Trefethen,et al. Euler–Maclaurin and Gregory interpolants , 2016, Numerische Mathematik.
[15] J. D. Villiers. Mathematics of Approximation , 2012 .
[16] J. M. Villiers. A nodal spline interpolant for the Gregory rule of even order , 1993 .
[17] Jonathan M. Borwein,et al. High-precision numerical integration: Progress and challenges , 2008, J. Symb. Comput..
[18] Masatake Mori,et al. Double Exponential Formulas for Numerical Integration , 1973 .