An improved Gregory-like method for 1-D quadrature

The quadrature formulas described by James Gregory (1638–1675) improve the accuracy of the trapezoidal rule by adjusting the weights near the ends of the integration interval. In contrast to the Newton–Cotes formulas, their weights are constant across the main part of the interval. However, for both of these approaches, the polynomial Runge phenomenon limits the orders of accuracy that are practical. For the algorithm presented here, this limitation is greatly reduced. In particular, quadrature formulas on equispaced 1-D node sets can be of high order (tested here up through order 20) without featuring any negative weights.

[1]  P. H. Powell A Letter to J. A. , 1967, English Journal.

[2]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[3]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[4]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[5]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[6]  G. Pólya,et al.  Über die Konvergenz von Quadraturverfahren , 1933 .

[7]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..

[8]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[9]  Károly Jordán Calculus of finite differences , 1951 .

[10]  Johan M. De Villiers,et al.  Gregory type quadrature based on quadratic nodal spline interpolation , 2000, Numerische Mathematik.

[11]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[12]  Bengt Fornberg,et al.  Numerical quadrature over smooth surfaces with boundaries , 2018, J. Comput. Phys..

[13]  Gregory's Method for Numerical Integration , 1972 .

[14]  Lloyd N. Trefethen,et al.  Euler–Maclaurin and Gregory interpolants , 2016, Numerische Mathematik.

[15]  J. D. Villiers Mathematics of Approximation , 2012 .

[16]  J. M. Villiers A nodal spline interpolant for the Gregory rule of even order , 1993 .

[17]  Jonathan M. Borwein,et al.  High-precision numerical integration: Progress and challenges , 2008, J. Symb. Comput..

[18]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .