Families of transposable elements, population structure and the origin of species

[1]  M. Lynch Statistical Inference on the Mechanisms of Genome Evolution , 2011, PLoS genetics.

[2]  T. Garland,et al.  Drift and Genome Complexity Revisited , 2011, PLoS genetics.

[3]  Keith R. Oliver,et al.  Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates , 2011, Mobile DNA.

[4]  M. Cadotte,et al.  Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities , 2011, PloS one.

[5]  P. Capy,et al.  The struggle for life of the genome's selfish architects , 2011, Biology Direct.

[6]  R. Gomulkiewicz,et al.  Introgressive hybridization as a mechanism for species rescue , 2011, Theoretical Ecology.

[7]  J. Brosius,et al.  Retroposon insertions provide insights into deep lagomorph evolution. , 2010, Molecular biology and evolution.

[8]  R. Baker,et al.  Natural hybridization generates mammalian lineage with species characteristics , 2010, Proceedings of the National Academy of Sciences.

[9]  S. Verjovski-Almeida,et al.  Bursts of transposition from non-long terminal repeat retrotransposon families of the RTE clade in Schistosoma mansoni. , 2010, International journal for parasitology.

[10]  Kateryna D Makova,et al.  The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. , 2010, Genome research.

[11]  M. Ungerer,et al.  Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species , 2010, Heredity.

[12]  P. Michalak An eruption of mobile elements in genomes of hybrid sunflowers , 2010, Heredity.

[13]  J. Flegr Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms , 2010, Biology Direct.

[14]  Keith R. Oliver,et al.  Transposable elements: powerful facilitators of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  Samuel Venner,et al.  Dynamics of transposable elements: towards a community ecology of the genome. , 2009, Trends in genetics : TIG.

[16]  M. Bonsall,et al.  The effects of colonization, extinction and competition on co-existence in metacommunities. , 2009, The Journal of animal ecology.

[17]  D. A. Kramerov,et al.  5S rRNA-derived and tRNA-derived SINEs in fruit bats. , 2009, Genomics.

[18]  Shigenori Maruyama,et al.  Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals , 2009, Proceedings of the National Academy of Sciences.

[19]  Eugene V Koonin,et al.  Evolution of genome architecture. , 2009, The international journal of biochemistry & cell biology.

[20]  Marlen S. Clark,et al.  Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods , 2008, Proceedings of the National Academy of Sciences.

[21]  J. Jurka,et al.  A universal classification of eukaryotic transposable elements implemented in Repbase , 2008, Nature Reviews Genetics.

[22]  Jean-Nicolas Volff,et al.  Transposable elements as drivers of genomic and biological diversity in vertebrates , 2008, Chromosome Research.

[23]  D. Barbash,et al.  Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes , 2008, Genome Biology.

[24]  J. Brosius,et al.  Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths). , 2007, Molecular biology and evolution.

[25]  N. Okada,et al.  MyrSINEs: a novel SINE family in the anteater genomes. , 2007, Gene.

[26]  J. Jurka,et al.  Repetitive sequences in complex genomes: structure and evolution. , 2007, Annual review of genomics and human genetics.

[27]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[28]  David Haussler,et al.  Thousands of human mobile element fragments undergo strong purifying selection near developmental genes , 2007, Proceedings of the National Academy of Sciences.

[29]  J. Jurka,et al.  Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. , 2007, Trends in genetics : TIG.

[30]  M. Noor,et al.  Evolutionary Genetics: Jumping into a New Species , 2006, Current Biology.

[31]  M. Ungerer,et al.  Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation , 2006, Current Biology.

[32]  Rod A Wing,et al.  Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. , 2006, Genome research.

[33]  J. Brookfield,et al.  The Evolution of Mobile DNAs: When Will Transposons Create Phylogenies That Look As If There Is a Master Gene? , 2006, Genetics.

[34]  M. Kiefmann,et al.  Retroposed Elements as Archives for the Evolutionary History of Placental Mammals , 2006, PLoS biology.

[35]  Gareth Jones,et al.  The evolution of echolocation in bats. , 2006, Trends in ecology & evolution.

[36]  J. Brookfield,et al.  A test of the master gene hypothesis for interspersed repetitive DNA sequences. , 2006, Molecular biology and evolution.

[37]  J. Thewissen,et al.  A retroposon analysis of Afrotherian phylogeny. , 2005, Molecular biology and evolution.

[38]  A. Failloux,et al.  Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. , 2005, Genetical research.

[39]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[40]  J. Jurka,et al.  RAG1 Core and V(D)J Recombination Signal Sequences Were Derived from Transib Transposons , 2005, PLoS biology.

[41]  A. Smit,et al.  A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). , 2005, Molecular biology and evolution.

[42]  W. Shim,et al.  Malazy, a degenerate, species-specific transposable element in Cercospora zeae-maydis. , 2005, Mycologia.

[43]  P. Capy,et al.  The First Steps of Transposable Elements Invasion , 2005, Genetics.

[44]  Marc Ereshefsky,et al.  Taxonomy, Polymorphism, and History: An Introduction to Population Structure Theory* , 2005, Philosophy of Science.

[45]  N. Okada,et al.  SINEs of speciation: tracking lineages with retroposons. , 2004, Trends in ecology & evolution.

[46]  W. Provine Ernst Mayr: Genetics and speciation. , 2004, Genetics.

[47]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[48]  J. Jurka,et al.  Duplication, coclustering, and selection of human Alu retrotransposons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Devor,et al.  Molecular and Temporal Characteristics of Human Retropseudogenes , 2003, Human biology.

[50]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[51]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[52]  C. Vieira,et al.  Evolution of genome size in Drosophila. is the invader's genome being invaded by transposable elements? , 2002, Molecular biology and evolution.

[53]  Milovan Krnjajic,et al.  Active Alu elements are passed primarily through paternal germlines. , 2002, Theoretical population biology.

[54]  M. G. Kidwell,et al.  Transposable elements and the evolution of genome size in eukaryotes , 2002, Genetica.

[55]  D. Kordis,et al.  Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons. , 2001, Molecular biology and evolution.

[56]  M. G. Kidwell,et al.  PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION , 2001, Evolution; international journal of organic evolution.

[57]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[58]  C. Biémont,et al.  Stress and transposable elements: co-evolution or useful parasites? , 2000, Heredity.

[59]  E Nevo,et al.  Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  N. C. Casavant,et al.  The end of the LINE?: lack of recent L1 activity in a group of South American rodents. , 2000, Genetics.

[61]  M. G. Kidwell,et al.  Transposable elements and host genome evolution. , 2000, Trends in ecology & evolution.

[62]  N Okada,et al.  SINE insertions: powerful tools for molecular systematics. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[63]  F. Utzet,et al.  Interspecific hybridization increases transposition rates of Osvaldo. , 1999, Molecular biology and evolution.

[64]  R. O’Neill,et al.  Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid , 1998, Nature.

[65]  N. Okada,et al.  Molecular evidence from retroposons that whales form a clade within even-toed ungulates , 1997, Nature.

[66]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Fabian M Jaksic,et al.  Extinction and colonization processes in subpopulations of five neotropical small mammal species , 1996, Oecologia.

[68]  C. Vieira,et al.  Geographical variation in insertion site number of retrotransposon 412 inDrosophila simulans , 1996, Journal of Molecular Evolution.

[69]  Gillespie,et al.  Development of Neutral and Nearly Neutral Theories , 1996, Theoretical population biology.

[70]  Jerry A. Coyne,et al.  Genetics and speciation , 1992, Nature.

[71]  M. Batzer,et al.  Evolution of the master Alu gene(s) , 1991, Journal of Molecular Evolution.

[72]  J. Brosius,et al.  Retroposons--seeds of evolution. , 1991, Science.

[73]  J. Coyne,et al.  A test of the role of meiotic drive in fixing a pericentric inversion. , 1989, Genetics.

[74]  T. Smith,et al.  A fundamental division in the Alu family of repeated sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Britten,et al.  Sources and evolution of human Alu repeated sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Coyne Meiotic segregation and male recombination in interspecific hybrids of Drosophila. , 1986, Genetics.

[77]  Montgomery Slatkin,et al.  Gene Flow in Natural Populations , 1985 .

[78]  B. Charlesworth,et al.  The population dynamics of transposable elements , 1983 .

[79]  J. Brookfield,et al.  Transposable elements in mendelian populations. I. A theory. , 1983, Genetics.

[80]  W. Doolittle,et al.  Molecular Biological Mechanisms of Speciation , 1983, Science.

[81]  G. Rubin,et al.  The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family , 1982, Cell.

[82]  M. G. Kidwell,et al.  Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. , 1977, Genetics.

[83]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[84]  T. Ohta Slightly Deleterious Mutant Substitutions in Evolution , 1973, Nature.

[85]  M. Kimura,et al.  On the probability of fixation of mutant genes in a population. , 1962, Genetics.

[86]  J. Jurka,et al.  Recent expansion of a new Ingi-related clade of Vingi non-LTR retrotransposons in hedgehogs. , 2011, Molecular biology and evolution.

[87]  M. Saito,et al.  Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Noninvasive Molecular Probing of Embryonic Stem Cell Differentiation , 2011, PloS one.

[88]  P. Michalak Epigenetic, transposon and small RNA determinants of hybrid dysfunctions , 2009, Heredity.

[89]  J. Jurka Conserved eukaryotic transposable elements and the evolution of gene regulation , 2007, Cellular and Molecular Life Sciences.

[90]  I. K. Jordan,et al.  Transposable element derived DNaseI-hypersensitive sites in the human genome , 2006, Biology Direct.

[91]  Carl W. Schmid,et al.  Existence of at least three distinct Alu subfamilies , 2005, Journal of Molecular Evolution.

[92]  Y. Quentin,et al.  The Alu family developed through successive waves of fixation closely connected with primate lineage history , 2005, Journal of Molecular Evolution.

[93]  Jürgen Brosius,et al.  Genomes were forged by massive bombardments with retroelements and retrosequences , 2004, Genetica.

[94]  N. Okada,et al.  Retroposon mapping in molecular systematics. , 2004, Methods in molecular biology.

[95]  J. Brookfield,et al.  Population genetics models of transposable elements , 2004, Genetica.

[96]  Heinz Saedler,et al.  Chromosome rearrangements and transposable elements. , 2002, Annual review of genetics.

[97]  H. Bradshaw,et al.  Clustering and subfamily relationships of the Alu family in the human genome. , 1987, Molecular biology and evolution.

[98]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[99]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.