Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies

This paper presents a numerical study concerning the active vibration control of smart piezoelectric beams. A comparison between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategies, linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controller, is performed in order to investigate their effectiveness to suppress vibrations in beams with piezoelectric patches acting as sensors or actuators. A one-dimensional finite element of a three-layered smart beam with two piezoelectric surface layers and metallic core is utilized. A partial layerwise theory, with three discrete layers, and a fully coupled electro-mechanical theory is considered. The finite element model equations of motion and electric charge equilibrium are presented and recast into a state variable representation in terms of the physical modes of the beam. The analyzed case studies concern the vibration reduction of a cantilever aluminum beam with a collocated asymmetric piezoelectric sensor/actuator pair bonded on the surface. The transverse displacement time history, for an initial displacement field and white noise force disturbance, and point receptance at the free end are evaluated with the open- and closed-loop classical and optimal control systems. The case studies allow the comparison of their performances demonstrating some of their advantages and disadvantages.

[1]  Roger Ohayon,et al.  PIEZOELECTRIC ACTIVE VIBRATION CONTROL OF DAMPED SANDWICH BEAMS , 2001 .

[2]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[3]  C.M.A. Vasques,et al.  Coupled three‐layered analysis of smart piezoelectric beams with different electric boundary conditions , 2005 .

[4]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[5]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[6]  Michael Krommer,et al.  On the influence of the electric field on free transverse vibrations of smart beams , 1999 .

[7]  Francis C. Moon,et al.  Modal Sensors/Actuators , 1990 .

[8]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[9]  William R. Saunders,et al.  Adaptive Structures: Dynamics and Control , 1998 .

[10]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[11]  S. E. Burke,et al.  Active vibration control of a simply supported beam using a spatially distributed actuator , 1987, IEEE Control Systems Magazine.

[12]  V. Balamurugan,et al.  Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control , 2001 .

[13]  A. Srinivasan,et al.  Smart Structures, Analysis and Design , 2001 .

[14]  W. Cady,et al.  Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals , 1946 .

[15]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[16]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[17]  Jeffrey B. Burl,et al.  Linear Optimal Control , 1998 .

[18]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[19]  M. F. Golnaraghi,et al.  Active Structural Vibration Control: A Review , 2003 .

[20]  In Lee,et al.  An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor , 1997 .

[21]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[22]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[23]  Farhan Gandhi,et al.  Comparison of Damping Augmentation Mechanisms with Position and Velocity Feedback in Active Constrained Layer Treatments , 2002 .

[24]  H. Tzou Piezoelectric Shells: Distributed Sensing and Control of Continua , 1993 .

[25]  Daniel J. Inman,et al.  Vibration: With Control, Measurement, and Stability , 1989 .

[26]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[27]  Michael J. Brennan,et al.  Strategies for the active control of flexural vibration on a beam , 1995 .

[28]  G. Gladwell,et al.  Solid mechanics and its applications , 1990 .

[29]  W. H. Huang,et al.  IS A COLLOCATED PIEZOELECTRIC SENSOR/ACTUATOR PAIR FEASIBLE FOR AN INTELLIGENT BEAM? , 1998 .

[30]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[31]  Stephen J. Elliott,et al.  ACTIVE POSITION CONTROL OF A FLEXIBLE SMART BEAM USING INTERNAL MODEL CONTROL , 2001 .

[32]  Ya-Peng Shen,et al.  Optimal control of active structures with piezoelectric modal sensors and actuators , 1997 .

[33]  César Miguel de Almeida Vasques Modelização do controlo activo de vibrações de vigas com sensores e actuadores piezoeléctricos , 2002 .

[34]  C. K. Lee,et al.  Piezoelectric modal sensor/actuator pairs for critical active damping vibration control , 1991 .

[35]  Kok Keng Ang,et al.  Dynamic stability analysis of finite element modeling of piezoelectric composite plates , 2004 .

[36]  Christopher Niezrecki,et al.  Piezoelectric actuation: State of the art , 2001 .