Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate

[1]  K. Cooke,et al.  Interaction of maturation delay and nonlinear birth in population and epidemic models , 1999, Journal of mathematical biology.

[2]  Andrei Korobeinikov,et al.  Stability of ecosystem: global properties of a general predator-prey model. , 2009, Mathematical medicine and biology : a journal of the IMA.

[3]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[4]  Mei Song,et al.  Global stability of an SIR epidemicmodel with time delay , 2004, Appl. Math. Lett..

[5]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[6]  Yasuhiro Takeuchi,et al.  Global asymptotic stability of an SIR epidemic model with distributed time delay , 2001 .

[7]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[8]  James R. Fienup,et al.  Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint , 1987 .

[9]  Y. N. Kyrychko,et al.  Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate , 2005 .

[10]  I. Robinson,et al.  Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. , 2001, Physical review letters.

[11]  Y. Kuang Delay Differential Equations: With Applications in Population Dynamics , 2012 .

[12]  Rui Xu,et al.  Global stability of a SIR epidemic model with nonlinear incidence rate and time delay , 2009 .

[13]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[14]  Nobuharu Nakajima,et al.  Lensless coherent imaging by a deterministic phase retrieval method with an aperture-array filter. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[16]  J. L. Harris,et al.  Diffraction and Resolving Power , 1964 .

[17]  James R Fienup Lensless coherent imaging by phase retrieval with an illumination pattern constraint. , 2006, Optics express.

[18]  Philip K Maini,et al.  Non-linear incidence and stability of infectious disease models. , 2005, Mathematical medicine and biology : a journal of the IMA.

[19]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Yasuhiro Takeuchi,et al.  Global stability of an SIR epidemic model with time delays , 1995, Journal of mathematical biology.

[21]  K. Nugent,et al.  Unique phase recovery for nonperiodic objects. , 2003, Physical review letters.

[22]  H. Smith Subharmonic Bifurcation in an SIR Epidemic Model , 2022 .

[23]  P. van den Driessche,et al.  Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population , 2003 .

[24]  H L Smith,et al.  Subharmonic bifurcation in an S-I-R epidemic model , 1983, Journal of mathematical biology.

[25]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[26]  Andrei Korobeinikov,et al.  Global Properties of Infectious Disease Models with Nonlinear Incidence , 2007, Bulletin of mathematical biology.

[27]  K. L. Cooke,et al.  Analysis of an SEIRS epidemic model with two delays , 1996, Journal of mathematical biology.

[28]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[29]  C. Connell McCluskey,et al.  Complete global stability for an SIR epidemic model with delay — Distributed or discrete , 2010 .

[30]  Lansun Chen,et al.  Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate , 2008, Math. Comput. Simul..

[31]  J. Miao,et al.  High resolution 3D x-ray diffraction microscopy. , 2002, Physical review letters.

[32]  Gergely Röst,et al.  Seir epidemiological model with varying infectivity and infinite delay. , 2008, Mathematical biosciences and engineering : MBE.

[33]  Xinzhu Meng,et al.  A delay SIR epidemic model with pulse vaccination and incubation times , 2010 .

[34]  J. Miao,et al.  Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone. , 2005, Physical review letters.

[35]  K. Cooke,et al.  Interaction of maturation delay and nonlinear birth in population and epidemic models , 1999 .

[36]  Andrei Korobeinikov,et al.  Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate. , 2009, Mathematical medicine and biology : a journal of the IMA.

[37]  C. McCluskey,et al.  Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. , 2009, Mathematical biosciences and engineering : MBE.