A Knowledge-Based System for Geometric Design
暂无分享,去创建一个
[1] Dieter Lasser,et al. Grundlagen der geometrischen Datenverarbeitung , 1989 .
[2] D. F. Rogers. Constrained B-spline curve and surface fitting , 1989 .
[3] Fuhua Cheng,et al. Interproximation: interpolation and approximation using cubic spline curves , 1991, Comput. Aided Des..
[4] Thomas A. Foley,et al. Local control of interval tension using weighted splines , 1986, Comput. Aided Geom. Des..
[5] J. C. Mason,et al. Scientific Software Systems , 1989 .
[6] M. Bercovier,et al. Approximation and/or construction of curves by minimization methods with or without constraints , 1992 .
[7] Ulf Björkenstam,et al. General cubic curve fitting algorithm using stiffness coefficients , 1987 .
[8] H. Nowacki. Mathematische Verfahren zum Glätten von Kurven und Flächen , 1990 .
[9] J. Encarnação,et al. Geometrische Verfahren der Graphischen Datenverarbeitung , 1990 .
[10] Stephen Wolfram,et al. Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .
[11] Horst Nowacki,et al. Fairing Bézier curves with constraints , 1990, Comput. Aided Geom. Des..
[12] Hans Hagen,et al. Geometric spline curves , 1985, Comput. Aided Geom. Des..
[13] J. C. Mason,et al. Numerical problem-solving environments: current and future trends , 1990 .
[14] J. C. Mason,et al. What do we mean by expert systems , 1990 .
[15] S. Ohsuga,et al. Toward intelligent CAD systems , 1989 .
[16] William F. Clocksin,et al. Programming in Prolog , 1981, Springer Berlin Heidelberg.
[17] Horst Nowacki,et al. Interpolating curves with gradual changes in curvature , 1987, Comput. Aided Geom. Des..
[18] G. Nielson. SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .