Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation in Tokamaks

Fast wave (FW) studies of mode conversion (MC) processes at the ion–ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k⊥ρi∼1 which leads to a scaling of the maximum poloidal mode number, Mmax, proportional to 1/ρ* (ρ*≡ρi/L). The computational resources needed scale with the number of radial (Nr), poloidal (Nθ), and toroidal (Nφ) elements as Nr * Nφ * Nθ3. Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger et al., Phys. Plasmas 9, 1873 (2002)], have been developed which for the first time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjun...

[1]  Eduardo F. D'Azevedo,et al.  Ultrahigh resolution simulations of mode converted ion cyclotron waves and lower hybrid waves , 2004, Comput. Phys. Commun..

[2]  Alan Lynn,et al.  Investigation of ion cyclotron range of frequencies mode conversion at the ion–ion hybrid layer in Alcator C-Mod , 2004 .

[3]  P. T. Bonoli,et al.  Role of trapped electron mode turbulence in internal transport barrier control in the Alcator C-Mod Tokamak , 2004 .

[4]  D. Meyerhofer,et al.  Extended x-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti , 2004 .

[5]  P. T. Bonoli,et al.  Toroidal rotation and momentum transport in Alcator C-Mod plasmas with no momentum input , 2004 .

[6]  I. Kaganovich Landau damping and anomalous skin effect in low-pressure gas discharges , 2004 .

[7]  E. D'Azevedo,et al.  Ultrahigh Resolution Simulations of Mode Converted ICRF and LH Waves with a Spectral Full Wave Code , 2003 .

[8]  E D'Azevedo,et al.  Sheared poloidal flow driven by mode conversion in tokamak plasmas. , 2003, Physical review letters.

[9]  Eduardo F. D'Azevedo,et al.  Advances in full-wave modeling of radio frequency heated, multidimensional plasmas , 2002 .

[10]  S. J. Wukitch,et al.  Mode conversion electron heating in Alcator C-Mod: Theory and experiment , 2000 .

[11]  Current Drive Chapter 6: Plasma auxiliary heating and current drive , 1999 .

[12]  R. Schreiber Numerical Methods for Partial Differential Equations , 1999 .

[13]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[14]  M. Brambilla,et al.  Electron Landau Damping of Ion Bernstein Waves in Tokamak Plasmas , 1998 .

[15]  James R. Wilson,et al.  Investigation of RF absorption by fast ions and high temperature plasmas using the ``METS95'' wave analysis tool , 1997 .

[16]  Jaeyoung Choi,et al.  Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines , 1994, Sci. Program..

[17]  P. T. Bonoli,et al.  First results from Alcator‐C‐MOD* , 1994 .

[18]  M. Brambilla,et al.  Numerical simulation of ion cyclotron heating of hot tokamak plasmas , 1988 .

[19]  P. Colestock,et al.  The theory of mode conversion and wave damping near the ion cyclotron frequency , 1983 .

[20]  D. Swanson Derivation of the mode conversion‐tunneling equation from the Vlasov equation , 1981 .

[21]  F. W. Perkins,et al.  Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances , 1977 .

[22]  T. H. Stix,et al.  The Theory Of Plasma Waves , 1962 .

[23]  E. W. Herold,et al.  Controlled fusion , 1959, IRE Transactions on Electron Devices.

[24]  I. Bernstein,et al.  Waves in a Plasma in a Magnetic Field , 1958 .