Flatness-Based Tracking of an Electromechanical Variable Valve Timing Actuator With Disturbance Observer Feedforward Compensation

A comprehensive control strategy for an automotive solenoid variable valve timing actuator is presented that addresses the issues of feedback sensors, soft seating or landing control, disturbance rejection and feedforward design. In particular, the motion control of the engine exhaust valve actuator subject to large cycle-to-cycle gas force variations is successfully demonstrated in simulation and on an experimental test-bench. Also provided is a method of characterization and online cycle-to-cycle identification of combustion gas force disturbances. The identified gas forces are used in energy-based feedforward and flatness-based landing algorithms. Simulated and experimental results indicate the proposed control methodology is capable of compensating for the combustion gas force disturbances experienced by exhaust valve solenoid actuators.

[1]  C.R. Koch,et al.  Modeling automotive gas-exchange solenoid valve actuators , 2005, IEEE Transactions on Magnetics.

[2]  Achim Koch,et al.  Sensorless Control of Electromagnetic Actuators for Variable Valve Train , 2000 .

[3]  Charles Robert Koch,et al.  Flatness-Based Feedback Control of an Automotive Solenoid Valve , 2007, IEEE Transactions on Control Systems Technology.

[4]  Yan Wang,et al.  Virtual Lash Adjuster for an Electromechanical Valve Actuator Through Iterative Learning Control , 2003 .

[5]  Charles Robert Koch,et al.  Modeling and Control of Solenoid Valves for Internal Combustion Engines , 2002 .

[6]  B. Lequesne,et al.  Design and optimization of two‐spring linear actuators , 1999 .

[7]  Charles Robert Koch,et al.  Flatness-based automotive solenoid valve control , 2004 .

[8]  R. Murray,et al.  Flat Systems , 1997 .

[9]  T.A. Parlikar,et al.  Design and experimental implementation of an electromagnetic engine valve drive , 2005, IEEE/ASME Transactions on Mechatronics.

[10]  C. Maerky,et al.  Modeling of Exhaust Valve Opening in a Camless Engine , 2002 .

[11]  B. Lequesne Fast-acting, long-stroke solenoids with two springs , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[12]  Martin Pischinger,et al.  Benefits of the Electromechanical Valve Train in Vehicle Operation , 2000 .

[13]  Yan Wang,et al.  Modeling and Control of Electromechanical Valve Actuator , 2002 .

[14]  J. Levine,et al.  On flatness necessary and sufficient conditions , 2004 .

[15]  Frederick Erickson,et al.  Performance Evaluation of a Camless Engine Using Valve Actuators with Programmable Timing , 1991 .

[16]  Peter B Eyabi Modeling and sensorless control of solenoidal actuator , 2003 .

[17]  Paolo Mercorelli,et al.  Robust flatness based control of an electromagnetic linear actuator using adaptive PID controller , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  Albert P. Pisano,et al.  Variable Valve Timing By Means of a Hydraulic Actuation , 2000 .

[19]  Thomas Roschke,et al.  Verfahren zur modellbasierten Messung und Regelung von Bewegungen an elektromagnetischen Aktoren , 1995 .

[20]  Ibrahim Haskara,et al.  Control of an electro‐mechanical valve actuator for a camless engine , 2004 .

[21]  Tsu-Chin Tsao,et al.  Control of an electromechanical actuator for camless engines , 2003, Proceedings of the 2003 American Control Conference, 2003..

[22]  Carlo Rossi,et al.  Control of a camless engine electromechanical actuator: position reconstruction and dynamic performance analysis , 2004, IEEE Transactions on Industrial Electronics.

[23]  D.J. Perreault,et al.  Design and experimental evaluation of an electromechanical engine valve drive , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[24]  Christoph Hartwig,et al.  Dedicated Intake Actuator for Electromagnetic Valve Trains , 2005 .

[25]  Anna G. Stefanopoulou,et al.  Iterative learning control for soft landing of electromechanical valve actuator in camless engines , 2003, IEEE Trans. Control. Syst. Technol..

[26]  Anna G. Stefanopoulou,et al.  Extremum seeking control for soft landing of an electromechanical valve actuator , 2004, Autom..

[27]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[28]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[29]  C.R. Koch,et al.  A magnetic flux-based position sensor for control of an electromechanical VVT actuator , 2006, 2006 American Control Conference.

[30]  Jeffrey Allen,et al.  Production Electro-Hydraulic Variable Valve-Train for a New Generation of I.C. Engines , 2002 .

[31]  P. Mercorelli,et al.  A Kalman estimator for detecting repetitive disturbances , 2005, Proceedings of the 2005, American Control Conference, 2005..

[32]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[33]  Rassem Ragheb Henry Single-Cylinder Engine Tests of a Motor-Driven, Variable-Valve Actuator , 2001 .

[34]  S. Peresada,et al.  Feedback linearizing control of switched reluctance motors , 1987 .

[35]  Herbert H. Woodson,et al.  Electromechanical Dynamics. Part I: Discrete Systems , 1968 .

[36]  James Scott,et al.  Intelligent Valve Actuation ( IVA ) System for Gasoline and Diesel Engines , 2005 .

[37]  Gordon P. Blair,et al.  Design and Simulation of Four-Stroke Engines , 1999 .

[38]  Tsu-Chin Tsao,et al.  Modeling and controller design of an electromagnetic engine valve , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[39]  Tsu-Chin Tsao,et al.  Control of an electromechanical camless valve actuator , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[40]  Ch. Gunselmann,et al.  Improved Robustness and Energy Consumption for Sensorless Electromagnetic Valve Train , 2003 .

[41]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[42]  Anna G. Stefanopoulou,et al.  Nonlinear control for magnetic levitation of automotive engine vales , 2006, IEEE Transactions on Control Systems Technology.

[43]  Y. Kawase,et al.  3D nonlinear transient analysis of dynamic behavior of the clapper type DC electromagnet , 1991 .

[44]  C.R. Koch,et al.  Flatness-based tracking of an electromechanical VVT actuator with magnetic flux sensor , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.