Parameterizing Edge Modification Problems Above Lower Bounds

For a fixed graphi?źF, we study the parameterized complexity of a variant of the $$F\text {-}{\textsc {free\ Editing}}$$ problem: Given a graphi?źG and a natural numberi?źk, is it possible to modify at mosti?źk edges ini?źG so that the resulting graph contains no induced subgraph isomorphic toi?źF? In our variant, the input additionally contains a vertex-disjoint packingi?ź$$\mathcal H$$ of induced subgraphs ofi?źG, which provides a lower boundi?ź$$h\mathcal H$$ on the number of edge modifications required to transformi?źG into an F-free graph. While earlier works used the numberi?źk as parameter or structural parameters of the input graphi?źG, we consider instead the parameteri?ź$$\ell :=k-h\mathcal H$$, that is, the number of edge modifications above the lower boundi?ź$$h\mathcal H$$. We show fixed-parameter tractability with respect toi?ź$$\ell $$ fori?ź$$K_3\text {-}\textsc {Free\ Editing}$$, Feedback Arc Set in Tournaments, and Cluster Editing when the packingi?ź$$\mathcal H$$ contains subgraphs with bounded solution size. Fori?ź$$K_3\text {-}\textsc {Free\ Editing}$$, we also prove NP-hardness in case of edge-disjoint packings ofi?ź$$K_3$$s andi?ź$$\ell =0$$, while for $$K_q\text {-}\textsc {Free\ Editing}$$ and $$q\ge 6$$, NP-hardness fori?ź$$\ell =0$$ even holds for vertex-disjoint packings ofi?ź$$K_q$$s.

[1]  Rolf Niedermeier,et al.  Exact combinatorial algorithms and experiments for finding maximum k-plexes , 2012, J. Comb. Optim..

[2]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[3]  René van Bevern Towards Optimal and Expressive Kernelization for d-Hitting Set , 2011, Algorithmica.

[4]  Yunlong Liu,et al.  Complexity and parameterized algorithms for Cograph Editing , 2012, Theor. Comput. Sci..

[5]  Mirko Krivánek,et al.  NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.

[6]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[7]  Michal Pilipczuk,et al.  Subexponential Parameterized Algorithm for Computing the Cutwidth of a Semi-complete Digraph , 2013, ESA.

[8]  Michal Pilipczuk,et al.  Exploring the Subexponential Complexity of Completion Problems , 2015, TOCT.

[9]  Naveen Sivadasan,et al.  Parameterized lower bound and improved kernel for Diamond-free Edge Deletion , 2015, IPEC.

[10]  Christian Komusiewicz,et al.  Graph-based data clustering with overlaps , 2009, Discret. Optim..

[11]  Jiong Guo A more effective linear kernelization for cluster editing , 2009, Theor. Comput. Sci..

[12]  Christian Komusiewicz,et al.  On Generating Triangle-Free Graphs , 2009, Electron. Notes Discret. Math..

[13]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[14]  Christophe Paul,et al.  Conflict Packing Yields Linear Vertex-Kernels for k -FAST, k -dense RTI and a Related Problem , 2011, MFCS.

[15]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[16]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[17]  Naveen Sivadasan,et al.  Parameterized Lower Bounds and Dichotomy Results for the NP-completeness of H-free Edge Modification Problems , 2015, LATIN.

[18]  Saket Saurabh,et al.  Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..

[19]  Leizhen Cai,et al.  Incompressibility of $$H$$H-Free Edge Modification Problems , 2014, Algorithmica.

[20]  Christophe Paul,et al.  Linear kernel for Rooted Triplet Inconsistency and other problems based on conflict packing technique , 2016, J. Comput. Syst. Sci..

[21]  Michal Pilipczuk,et al.  Subexponential fixed-parameter tractability of cluster editing , 2011, ArXiv.

[22]  Stefan Kratsch,et al.  Polynomial Kernelizations for MIN F+Π1 and MAX NP , 2009, Algorithmica.

[23]  Marek Karpinski,et al.  Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament , 2010, ISAAC.

[24]  Michal Pilipczuk,et al.  On multiway cut parameterized above lower bounds , 2011, TOCT.

[25]  Geevarghese Philip,et al.  Raising The Bar For Vertex Cover: Fixed-parameter Tractability Above A Higher Guarantee , 2015, SODA.

[26]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[27]  Holger H. Hoos,et al.  Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing , 2015, LION.

[28]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[29]  Christian Komusiewicz,et al.  Isolation concepts for efficiently enumerating dense subgraphs , 2009, Theor. Comput. Sci..

[30]  Michael R. Fellows,et al.  Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.

[31]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[32]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[33]  Sebastian Böcker,et al.  A golden ratio parameterized algorithm for Cluster Editing , 2011, J. Discrete Algorithms.

[34]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2013, Discret. Optim..

[35]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.

[36]  Jianer Chen,et al.  A 2k kernel for the cluster editing problem , 2012, J. Comput. Syst. Sci..

[37]  Rolf Niedermeier,et al.  Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.

[38]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[39]  Noga Alon,et al.  Ranking Tournaments , 2006, SIAM J. Discret. Math..

[40]  Magnus Wahlström,et al.  Algorithms, measures and upper bounds for satisfiability and related problems , 2007 .

[41]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[42]  Saket Saurabh,et al.  Faster Parameterized Algorithms Using Linear Programming , 2012, ACM Trans. Algorithms.

[43]  Fedor V. Fomin,et al.  Kernels for feedback arc set in tournaments , 2011, J. Comput. Syst. Sci..

[44]  Stefan Kratsch,et al.  Recent developments in kernelization: A survey , 2014, Bull. EATCS.

[45]  Sebastian Böcker,et al.  Going weighted: Parameterized algorithms for cluster editing , 2009, Theor. Comput. Sci..

[46]  Uriel Feige Faster FAST(Feedback Arc Set in Tournaments) , 2009, ArXiv.

[47]  Jayme Luiz Szwarcfiter,et al.  Applying Modular Decomposition to Parameterized Cluster Editing Problems , 2008, Theory of Computing Systems.