Observation of soliton compression in silicon photonic crystals

Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms.

[1]  I. Sagnes,et al.  Temporal solitons and pulse compression in photonic crystal waveguides , 2010 .

[2]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[3]  Ruan Shuangchen,et al.  Supercontinuum Generation in a Photonic Crystal Fibre , 2004 .

[4]  Yuri S. Kivshar,et al.  Solitons in photonic crystals , 2003 .

[5]  A. J. Taylor,et al.  Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres , 2003, Nature.

[6]  A. C. Bryce,et al.  Subpicosecond Pulse Generation at Quasi-40-GHz Using a Passively Mode-Locked AlGaInAs–InP 1.55- $\mu{\hbox {m}}$ Strained Quantum-Well Laser , 2009, IEEE Photonics Technology Letters.

[7]  Ole Bang,et al.  Supercontinuum generation in photonic crystal fibres , 2007 .

[8]  R. Stolen,et al.  Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. , 1983, Optics letters.

[9]  T. Krauss,et al.  Observation of pulse compression in photonic Crystal coupled cavity waveguides , 2004, Journal of Lightwave Technology.

[10]  Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications , 2005, IEEE Photonics Technology Letters.

[11]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[12]  J. Fatome,et al.  Observation of Kuznetsov-Ma soliton dynamics in optical fibre , 2012, Scientific Reports.

[13]  C. Patton,et al.  Experimental observation of Fermi-Pasta-Ulam recurrence in a nonlinear feedback ring system. , 2007, Physical review letters.

[14]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[15]  P. Colman,et al.  Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide. , 2012, Physical review letters.

[16]  A. Peacock,et al.  Soliton propagation in tapered silicon core fibers. , 2010, Optics letters.

[17]  Yeshaiahu Fainman,et al.  Monolithic nonlinear pulse compressor on a silicon chip. , 2010, Nature communications.

[18]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[19]  J C Knight,et al.  Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique. , 2010, Optics express.

[20]  G. Agrawal,et al.  Dispersion tailoring and soliton propagation in silicon waveguides. , 2006, Optics letters.

[21]  Robert W Boyd,et al.  Optical solitons in a silicon waveguide. , 2007, Optics express.

[22]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[23]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[24]  Sylvain Combrié,et al.  Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides. , 2009, Optics express.

[25]  Min Yang,et al.  A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications , 2012, 2012 International Electron Devices Meeting.

[26]  J. Sipe,et al.  Optical pulse propagation in nonlinear photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  H. Driel,et al.  Two-photon absorption and Kerr coefficients of silicon for 850–2200nm , 2007 .

[28]  B. Eggleton,et al.  Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings. , 2005, Optics letters.

[29]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[30]  Self-frequency blueshift of dissipative solitons in silicon-based waveguides , 2013, 1303.3411.

[31]  Rick Trebino,et al.  Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. , 2005, Optics express.

[32]  Thomas F. Krauss,et al.  Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law , 2009 .

[33]  Bill Corcoran,et al.  Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. , 2009, Optics express.

[34]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[35]  B. Soller,et al.  High resolution optical frequency domain reflectometry for characterization of components and assemblies. , 2005, Optics express.

[36]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[37]  Liam O'Faolain,et al.  Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. , 2011, Optics express.

[38]  Toshio Morioka,et al.  1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency , 2012 .

[39]  Michal Lipson,et al.  Nonlinear silicon photonics , 2012, 2012 17th Opto-Electronics and Communications Conference.

[40]  Jeff F. Young,et al.  Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity. , 2005, Physical review letters.

[41]  Ivan D. Rukhlenko,et al.  Quantum-dot supercrystals for future nanophotonics , 2013, Scientific Reports.

[42]  Phase-resolved observations of optical pulse propagation in chip-scale silicon nanowires , 2013, 1302.0434.

[43]  Yoshitaka Inui,et al.  A micrometre-scale Raman silicon laser with a microwatt threshold , 2013, Nature.

[44]  J. Méteau,et al.  Supercontinuum sources in optical coherence tomography: A state of the art and the application to scan-free time domain correlation techniques and depth dependant dispersion compensation , 2012 .

[45]  Z. Yoshida Nonlinear Science, , 2004 .

[46]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[47]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[48]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[49]  G. Agrawal,et al.  Impact of two-photon absorption on self-phase modulation in silicon waveguides. , 2007, Optics letters.

[50]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[51]  R. Holzwarth,et al.  Femtosecond optical frequency combs , 2009 .

[52]  P. Russell,et al.  Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers , 2003, Science.

[53]  Fabrice Raineri,et al.  Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides , 2013 .

[54]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[55]  Sylvain Combrié,et al.  Soliton dynamics in the multiphoton plasma regime , 2013, Scientific Reports.

[56]  Krug,et al.  Bragg grating solitons. , 1996, Physical review letters.

[57]  Inuk Kang,et al.  Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms. , 2002, Optics letters.