Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition.

1. IntroductionIn the comprehensive review entitled ‘The DPNHdehydrogenase of the mitochondrial respiratory chain’written more than quarter of a century ago, theauthors stated: ‘‘Thanks to the application of sophis-ticated techniques, the characteristics of this unusualand interesting enzyme are now understood, at leastin broad terms, long-standing debates in the literaturehave been satisfactorily resolved, and the way nowseems clear for the solution of the remaining prob-lems ...’’ 1 . Five years later another scholar ofwxComplex I has pointed out that ‘‘...since no realbreakthrough in the area have occurred since 1963, itis difficult to find a fresh approach to the subject’’

[1]  A. Vinogradov,et al.  Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. , 1990, Biochimica et biophysica acta.

[2]  J. Walker,et al.  Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme. , 1992, Biochemistry.

[3]  C. Carlsson,et al.  [51] Mitochondrial ATPase inhibitor: Properties and applications , 1979 .

[4]  A. Vinogradov,et al.  Kinetics of the mitochondrial three-subunit NADH dehydrogenase interaction with hexammineruthenium(III). , 1995, Biochimica et biophysica acta.

[5]  R. E. Beyer [34] Preparation, properties, and conditions for assay of phosphorylating electron transport particles (ETPH) and its variations , 1967 .

[6]  W. Oettmeier,et al.  The acridones, new inhibitors of mitochondrial NADH: ubiquinone oxidoreductase (complex I). , 1992, Biochimica et biophysica acta.

[7]  M. B. Thorn Activation of succinate dehydrogenase in heart-muscle preparations. , 1962, The Biochemical journal.

[8]  D. Arp,et al.  Aerobically purified hydrogenase from Azotobacter vinelandii: activity, activation, and spectral properties. , 1991, Archives of biochemistry and biophysics.

[9]  A. Vinogradov,et al.  Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors. , 1984, Biochimica et Biophysica Acta.

[10]  H. Beinert,et al.  New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria. , 1982, Biochimica et biophysica acta.

[11]  A. Vinogradov,et al.  [37] The keilin-hartree heart muscle preparation , 1979 .

[12]  L. Ernster,et al.  Stereospecificity of Certain Soluble and Particulate Preparations of Mitochondrial Reduced Nicotinamide-Adenine Dinucleotide Dehydrogenase From Beef Heart , 1965, Nature.

[13]  R. Gennis,et al.  Structure of cytochrome c oxidase, energy generator of aerobic life , 1995, Science.

[14]  P. Mitchell Protonmotive redox mechanism of the cytochrome b‐c 1 complex in the respiratory chain: Protonmotive ubiquinone cycle , 1975, FEBS letters.

[15]  U. Brandt,et al.  Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. , 1997, Biochimica et biophysica acta.

[16]  B. Chance,et al.  Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. , 1967, The Journal of biological chemistry.

[17]  S. Albracht,et al.  The pathway of electron transfer in NADH:Q oxidoreductase. , 1989, Biochimica et biophysica acta.

[18]  Y. Hatefi,et al.  [41] The preparation and properties of DPNH—cytochrome c reductase (complex I–III of the respiratory chain) , 1967 .

[19]  U. Nehls,et al.  Relationship between a subunit of NADH dehydrogenase (complex I) and a protein family including subunits of cytochrome reductase and processing protease of mitochondria , 1991, FEBS letters.

[20]  A. Kotlyar,et al.  The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles. , 1997, Biochemistry.

[21]  Y. Hatefi Introduction--preparation and properties of the enzymes and enzymes complexes of the mitochondrial oxidative phosphorylation system. , 1978, Methods in enzymology.

[22]  H. Löw,et al.  Succinate-linked diphosphopyridine nucleotide reduction in submitochondrial particles , 1963 .

[23]  C. Lee,et al.  Stereochemistry of hydrogen-transfer in the energy-linked pyridine nucleotide transhydrogenase and related reactions. , 1965, Biochimica et biophysica acta.

[24]  R. Estabrook,et al.  HYDROGEN TRANSFER BETWEEN REDUCED DIPHOSPHOPYRIDINE NUCLEOTIDE DEHYDROGENASE AND THE RESPIRATORY CHAIN. I. EFFECT OF SULFHYDRYL INHIBITORS AND PHOSPHOLIPASE. , 1964, The Journal of biological chemistry.

[25]  B. Chance,et al.  Energy-Linked Reduction of Mitochondrial Pyridine Nucleotide , 1960, Nature.

[26]  T. Yagi,et al.  Identification of the NADH-binding subunit of energy-transducing NADH-quinone oxidoreductase (NDH-1) of thermus thermophilus HB-8. , 1991, Biochemical and Biophysical Research Communications - BBRC.

[27]  E. C. Slater The dihydrocozymase-cytochrome c reductase activity of heartmuscle preparation. , 1950, The Biochemical journal.

[28]  R. Ramsay,et al.  Chapter 6 NADH-ubiquinone oxidoreductase , 1992 .

[29]  I. A. Moroz,et al.  Ubisemiquinone in the NADH‐ubiquinone reductase region of the mitochondrial respiratory chain , 1989 .

[30]  L. Amzel,et al.  The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Miyoshi,et al.  Comparison of the structures of the quinone-binding sites in beef heart mitochondria. , 1993, The Journal of biological chemistry.

[32]  G. Lenaz,et al.  Assay conditions for the mitochondrial NADH:coenzyme Q oxidoreductase , 1993, FEBS letters.

[33]  S. Vyas,et al.  Studies on dihydronicotinamide adenine dinucleotide ubiquinone reductase. I. Assay of ubiquinone reductase activity in submitochondrial particles and extracts. , 1966, The Journal of biological chemistry.

[34]  E. C. Slater,et al.  Steady-state kinetics of low molecular weight (type-II) NADH dehydrogenase. , 1976, Biochimica et biophysica acta.

[35]  L. Ernster,et al.  [87] Energy-coupling in nonphosphorylating submitochondrial particles , 1967 .

[36]  S. Albracht,et al.  Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone. , 1994, European journal of biochemistry.

[37]  S. Chen,et al.  Studies on the interaction of arylazido-beta-alanyl NAD+ with the mitochondrial NADH dehydrogenase. , 1981, The Journal of biological chemistry.

[38]  G. Krishnamoorthy,et al.  Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. , 1988, The Journal of biological chemistry.

[39]  R. Matthews,et al.  The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. , 1969, Biochemical and biophysical research communications.

[40]  A. Vinogradov,et al.  Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. , 1997, Biochimica et biophysica acta.

[41]  A. Vinogradov,et al.  Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. , 1982, The Biochemical journal.

[42]  R Luft,et al.  The development of mitochondrial medicine. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Ragan,et al.  Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. , 1975, The Journal of biological chemistry.

[44]  B. Mackler Studies of DPNH oxidase: properties of a soluble DPNH dehydrogenase. , 1961, Biochimica et Biophysica Acta.

[45]  C. Ragan,et al.  The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association. , 1978, The Biochemical journal.

[46]  T. Singer Determination of the activity of succinate, NADH, choline, and alpha-glycerophosphate dehydrogenases. , 2006, Methods of biochemical analysis.

[47]  I. A. Moroz,et al.  Coupling site I and the rotenone‐sensitive ubisemiquinone in tightly coupled submitochondrial particles , 1990, FEBS letters.

[48]  D. Edmondson,et al.  Mechanism of the reductive activation of succinate dehydrogenase. , 1975, The Journal of biological chemistry.

[49]  E. Racker,et al.  Low molecular weight analogs of coenzyme Q as hydrogen acceptors and donors in systems of the respiratory chain. , 1975, Biochemical and biophysical research communications.

[50]  J. Walker,et al.  Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. , 1992, Biochimica et biophysica acta.

[51]  R. Gennis,et al.  Bacterial NADH-quinone oxidoreductases: Iron-sulfur clusters and related problems , 1993, Journal of bioenergetics and biomembranes.

[52]  C. Lee,et al.  Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation. , 1997, Biochimica et biophysica acta.

[53]  E. C. Slater,et al.  Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase. , 1976, Biochimica et biophysica acta.

[54]  A. Vinogradov,et al.  Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. , 1993, Biochimica et biophysica acta.

[55]  A. Vinogradov,et al.  HYSTERESIS IN THE BEHAVIOR OF BOVINE HEART MITOCHONDRIAL COMPLEX I : KINETIC AND THERMODYNAMIC PARAMETERS OF THE SLOW REVERSIBLE ACTIVE/INACTIVE TRANS ITION , 1994 .

[56]  A. Ghelli,et al.  Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). , 1994, The Biochemical journal.

[57]  F. Armstrong,et al.  Diode-like behaviour of a mitochondrial electron-transport enzyme , 1992, Nature.

[58]  J. Walker,et al.  The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains , 1992, Quarterly Reviews of Biophysics.

[59]  B. Bielski,et al.  Enzyme-catalyzed free radical reactions with nicotinamide adenine nucleotides. II. Lactate dehydrogenase-catalyzed oxidation of reduced nicotinamide adenine dinucleotide by superoxide radicals generated by xanthine oxidase. , 1974, The Journal of biological chemistry.

[60]  Y. Hatefi,et al.  Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I). , 1994, Biochemistry.

[61]  J. Rydström,et al.  The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart. , 1978, Biochimica et biophysica acta.

[62]  E. Cadenas,et al.  Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration , 1975, FEBS letters.

[63]  A. Vinogradov,et al.  Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III). , 1993, Biochimica et biophysica acta.

[64]  A. Ghelli,et al.  Natural variation in the potency and binding sites of mitochondrial quinone-like inhibitors. , 1994, Biochemical Society transactions.

[65]  R. Maier,et al.  Bradhyrhizobium japonicum hydrogen-ubiquinone oxidoreductase activity: quinone specificity, inhibition by quinone analogs, and evidence for separate sites of electron acceptor reactivity. , 1995, Biochimica et biophysica acta.

[66]  E. Kearney,et al.  STUDIES ON THE RESPIRATORY CHAIN-LINKED REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE. VI. FURTHER PURIFICATION AND PROPERTIES OF THE ENZYME FROM BEEF HEART. , 1964, The Journal of biological chemistry.

[67]  S. Chen,et al.  The [4B-3H] NADH-H2O exchange reaction of the mitochondrial NADH dehydrogenase. , 1985, Biochemical and biophysical research communications.

[68]  J. Cooper,et al.  The molecular pathology of respiratory-chain dysfunction in human mitochondrial myopathies. , 1990, Biochimica et biophysica acta.

[69]  F. M. Huennekens,et al.  Flavin mononucleotide: the coenzyme of reduced diphosphopyridine nucleotide dehydrogenase. , 1963, The Journal of biological chemistry.

[70]  Y. Hatefi,et al.  Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. Yagi The bacterial energy-transducing NADH-quinone oxidoreductases. , 1993, Biochimica et biophysica acta.

[72]  L. Horstman,et al.  Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. , 1967, The Journal of biological chemistry.

[73]  H. S. Mason,et al.  Oxidases and Related Redox Systems , 1982 .

[74]  A. Vinogradov,et al.  Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. , 1992, Biochimica et biophysica acta.

[75]  V. Kupriyanov,et al.  Some peculiarities of the steady-state kinetics of electron transfer in submitochondrial particles. A kinetic model based on the idea of activation on the respiratory chain induced by electron transfer. , 1972, Biochimica et biophysica acta.

[76]  A. Vinogradov,et al.  Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein , 1985, FEBS letters.

[77]  Fowler Lr,et al.  Studies on the electron transfer system. L. On the mechanism of reconstitution of the mitochondrial electron transfer system. , 1963 .

[78]  H. Lawford,et al.  Proton translocation coupled to quinone reduction by reduced nicotinamide--adenine dinucleotide in rat liver and ox heart mitochondria. , 1972, The Biochemical journal.

[79]  M. L. Genova,et al.  Major changes in complex I activity in mitochondria from aged rats may not be detected by direct assay of NADH:coenzyme Q reductase. , 1995, The Biochemical journal.

[80]  D. Kang,et al.  Kinetic of Superoxide Formation by Respiratory Chain NADH-Dehydrogenase of Bovine Heart Mitochondria , 1983 .

[81]  S. Albracht,et al.  New evidence for the dimeric nature of NADH:Q oxidoreductase in bovine-heart submitochondrial particles. , 1990, Biochimica et biophysica acta.

[82]  Y. Hatefi,et al.  N-arylazido-beta-alanyl-NAD+, a new NAD+ photoaffinity analogue. Synthesis and labeling of mitochondrial NADH dehydrogenase. , 1990, Biochemistry.

[83]  M. Erecińska,et al.  The effect of antimycin A on cytochromes b561, b566, and their relationship to ubiquinone and the iron-sulfer centers S-1 (+N-2) and S-3. , 1976, Archives of biochemistry and biophysics.

[84]  K. Takeshige,et al.  NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. , 1979, The Biochemical journal.

[85]  H. Iwamura,et al.  Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. , 1996, Biochimica et biophysica acta.

[86]  F. Hommes THE SUCCINATE-LINKED NICOTINAMIDE-ADENINE DINUCLEOTIDE REDUCTION IN SUBMITOCHONDRIAL PARTICLES. I. KINETIC STUDIES OF THE REACTION. , 1963, Biochimica et biophysica acta.

[87]  A. Vinogradov,et al.  Reductive inactivation of the mitochondrial three subunit NADH dehydrogenase. , 1993, Biochimica et biophysica acta.

[88]  B. Bielski,et al.  Glyceraldehyde-3-phosphate dehydrogenase-catalyzed chain oxidation of reduced nicotinamide adenine dinucleotide by perhydroxyl radicals. , 1980, The Journal of biological chemistry.

[89]  E. A. Kean Inhibitory action of rhein on the reduced nicotinamide adenine dinucleotidedehydrogenase complex of mitochondrial particles and on other dehydrogenases. , 1970, Biochemical pharmacology.

[90]  G. Hofhaus,et al.  The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. , 1991, European journal of biochemistry.

[91]  Britton Chance,et al.  Energy-linked functions of mitochondria , 1963 .

[92]  R. O. Morris,et al.  Thermal Denaturation of the Heart Muscle Preparation with Respect to Its Capacity for DPNH Oxidation , 1962 .

[93]  L. Djavadi-Ohaniance,et al.  Oxidation of NADPH by submitochondrial particles from beef heart in complete absence of transhydrogenase activity from NADPH to NAD. , 1975, The Journal of biological chemistry.

[94]  D. Sanadi,et al.  ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. VII. THE ENERGY-REQUIRING REDUCTION OF PYRIDINE NUCLEOTIDE BY SUCCINATE AND THE ENERGY-YIELDING OXIDATION OF REDUCED PYRIDINE NUCLEOTIDE BY FUMARATE. , 1963, Biochemistry.

[95]  H. Reichenbach,et al.  Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. , 1994, European journal of biochemistry.

[96]  T. King,et al.  The preparation and some properties of a reduced diphosphopyridine nucleotide dehydrogenase from the snake venom digest of a heartmuscle preparation. , 1962, Journal of Biological Chemistry.

[97]  K. Schneider,et al.  ESR PROPERTIES OF MEMBRANE-BOUND HYDROGENASES FROM AEROBIC HYDROGEN BACTERIA , 1983 .

[98]  V. N. Luzikov,et al.  Studies on stabilization of the oxidative phosphorylation system. II. Electron transfer-dependent resistance of succinate oxidase and NADH oxidase systems of submitochondrial particles to proteinases and cobra venom phospholipase. , 1972, Biochimica et biophysica acta.

[99]  C. Ragan,et al.  Pyridine nucleotide transhydrogenase activity of soluble cardiac NADH dehydrogenase and particulate NADH-ubiquinone reductase. , 1974, Biochemical and biophysical research communications.

[100]  C. Ragan NADH-ubiquinone oxidoreductase. , 1976, Biochimica et biophysica acta.

[101]  S. Albracht,et al.  Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. I. Pre-steady-state kinetics with NADPH. , 1986, Biochimica et biophysica acta.

[102]  V. Saks,et al.  Comparative study of thermal degradation of electron transfer particle and reconstituted respiratory chain. Relation of electron transfer to reactivation of submitochondrial particles. , 1970, Biochimica et biophysica acta.

[103]  B. Halliwell Oxidants and human disease: some new concepts 1 , 1987, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[104]  T. King,et al.  Purification, properties and reconstitutive activity of a DPNH dehydrogenase , 1972 .

[105]  I. A. Moroz,et al.  Energy‐dependent Complex I‐associated ubisemiquinones in submitochondrial particles , 1995, FEBS letters.

[106]  C. Petitclerc,et al.  Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli. , 1971, European journal of biochemistry.

[107]  E. Racker,et al.  Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide-cytochrome b segment of the respiratory chain: assay and properties in submitochondrial particles. , 1966, The Journal of biological chemistry.

[108]  A. Vinogradov Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase , 1993, Journal of bioenergetics and biomembranes.

[109]  A. Vinogradov,et al.  A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. , 1997, Biochimica et biophysica acta.

[110]  T. Yagi,et al.  Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. , 1990, Biochemistry.

[111]  A. Ghelli,et al.  Complex I and complex III of mitochondria have common inhibitors acting as ubiquinone antagonists. , 1993, Biochemical and biophysical research communications.

[112]  A. Vinogradov,et al.  Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. , 1980, The Biochemical journal.

[113]  P. D. de Jong,et al.  Bovine-heart NADH:ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. , 1997, Biochimica et biophysica acta.

[114]  M. Gutman,et al.  Studies on the respiratory chain-linked nicotinamide adenine dinucleotide dehydrogenase. XXII. Rhein, a competitive inhibitor of the dehydrogenase. , 1971, The Journal of biological chemistry.

[115]  M. Gutman,et al.  The effect of ΔμH+ on the interaction of rotenone with Complex I of submitochondrial particles , 1992 .

[116]  A. Vinogradov,et al.  ATP synthesis catalyzed by the mitochondrial F1‐F0 ATP synthase is not a reversal of its ATPase activity , 1995, FEBS letters.

[117]  T. Tomizaki,et al.  Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A , 1995, Science.

[118]  A. Vinogradov,et al.  Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase. , 1985, Biochimica et biophysica acta.

[119]  Y. Hatefi,et al.  Isolation and enzymatic properties of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase. , 1969, The Journal of biological chemistry.

[120]  Chang-an Yu,et al.  Mitochondrial ubiquinol-cytochromec reductase complex: Crystallization and protein: Ubiquinone interaction , 1993, Journal of bioenergetics and biomembranes.

[121]  J. Turrens,et al.  Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. , 1980, The Biochemical journal.

[122]  C. Ragan,et al.  EPR studies of iron-sulfur clusters in isolated subunits and subfractions of NADH-ubiquinone oxidoreductase. , 1985, The Journal of biological chemistry.

[123]  A. Vinogradov,et al.  Kinetics of ubiquinone reduction by the resolved succinate: ubiquinone reductase. , 1982, Biochimica et biophysica acta.