Piezoelectric actuators with on-board sensing for micro-robotic applications

We present a piezoelectric actuator design with integrated position sensing for millimeter scale mobile robotics. Actuators are fabricated using the Smart Composite Microstructure (SCM) fabrication process which consists of laser micromachining and composite lamination. Electrically isolated strain-sensing regions of the piezoelectric material undergo identical motion as the actuation layers and thus directly sense tip deflection through the piezoelectric effect. We present the design considerations of strain-sensing piezoelectric actuators which can be made over a wide range of sizes and in both unimorph and bimorph configurations. These actuators demonstrate a linear relationship between the piezo sensor voltage output and the actuator tip to tip displacement when actuated over input bias voltages ranging between 25− 200 V and frequencies from 10− 250 Hz. We demonstrate the applicability of strain sensing actuators for microrobotic flying robots through wing-collision and wing-degradation experiments. Actuators enabled successful detection of instantaneous wing collisions when flapping near an obstacle. Furthermore, wing degradation through loss of wing area resulted in increased wing amplitudes which were observed in the sensor. Coincident actuation and sensing within microrobots represents a meaningful step towards closed loop control capabilities of microrobots using on-board sensors. Page 1 of 10 AUTHOR SUBMITTED MANUSCRIPT SMS-108337.R2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 A cc ep te d M a us cr ip t Piezoelectric actuators with on-board sensing for micro-robotic applications 2

[1]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[2]  Neel Doshi,et al.  Phase control for a legged microrobot operating at resonance , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Nobuaki Kawahara,et al.  In-pipe wireless microrobot , 1999, Optics East.

[4]  R. Cartar,et al.  Morphological senescence and longevity : an experiment relating wing wear and life span in foraging wild bumble bees , 1992 .

[5]  Neel Doshi,et al.  Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot , 2018, Nature Communications.

[6]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part I-system modeling , 2006, IEEE Transactions on Robotics.

[7]  Pierre-Emile J. Duhamel,et al.  Biologically Inspired Optical-Flow Sensing for Altitude Control of Flapping-Wing Microrobots , 2013, IEEE/ASME Transactions on Mechatronics.

[8]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[9]  R. Wood,et al.  Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators , 2015 .

[10]  Robert J. Wood,et al.  Sensors and Actuators A: Physical , 2009 .

[11]  Robert J. Wood,et al.  An analytic framework for developing inherently-manufacturable pop-up laminate devices , 2014 .

[12]  R. Wood,et al.  Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion , 2016, Science.

[13]  Robert J. Wood,et al.  A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping-Wing Vehicles , 2018 .

[14]  Ronald S. Fearing,et al.  Power Electronics Design Choice for Piezoelectric Microrobots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Radhika Nagpal,et al.  Flight of the robobees. , 2013, Scientific American.

[16]  Ronald S. Fearing,et al.  Development of piezoelectric bending actuators with embedded piezoelectric sensors for micromechanical flapping mechanisms , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[17]  J. P. Whitney,et al.  Pop-up book MEMS , 2011 .

[18]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[19]  R. Wood,et al.  Concomitant sensing and actuation for piezoelectric microrobots , 2018 .

[20]  Andrew M. Mountcastle,et al.  Wing wear reduces bumblebee flight performance in a dynamic obstacle course , 2016, Biology Letters.

[21]  Robert J. Wood,et al.  Stretchable circuits and sensors for robotic origami , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Neel Doshi,et al.  Model driven design for flexure-based Microrobots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Metin Sitti,et al.  Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[24]  Gu-Yeon Wei,et al.  Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency , 2016 .

[25]  Robert J. Wood,et al.  Non-linear resonance modeling and system design improvements for underactuated flapping-wing vehicles , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Q. Y. Zeng,et al.  Study on Displacement Self-Sensing of Piezoelectric Actuator , 2007 .

[27]  Robert J. Wood,et al.  An actuated gaze stabilization platform for a flapping-wing microrobot , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Rudolf Seethaler,et al.  Self-sensing tracking control for piezoelectric actuators based on sensor fusion , 2012, Smart Structures.

[29]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[30]  Yuen Kuan Yong,et al.  Miniature Resonant Ambulatory Robot , 2017, IEEE Robotics and Automation Letters.

[31]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[32]  Garnett E. Simmers,et al.  Improved Piezoelectric Self-sensing Actuation , 2004 .

[33]  Andrew M. Mountcastle,et al.  An insect-inspired collapsible wing hinge dampens collision-induced body rotation rates in a microrobot , 2019, Journal of the Royal Society Interface.

[34]  Neel Doshi,et al.  Feedback control of a legged microrobot with on-board sensing , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[35]  Robert J. Wood,et al.  High speed locomotion for a quadrupedal microrobot , 2014, Int. J. Robotics Res..

[36]  Robert J. Wood,et al.  Estimating attitude and wind velocity using biomimetic sensors on a microrobotic bee , 2013, 2013 IEEE International Conference on Robotics and Automation.

[37]  Robert J. Wood,et al.  A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot , 2017, Science Robotics.

[38]  Neel Doshi,et al.  The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot , 2018, Science Robotics.

[39]  Robert J. Wood,et al.  Microrobot Design Using Fiber Reinforced Composites , 2008 .

[40]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[41]  Robert J. Wood,et al.  A hovering flapping-wing microrobot with altitude control and passive upright stability , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.