Termites: a Retinex implementation based on a colony of agents

This paper describes a novel implementation of the Retinex algorithm with the exploration of the image done by an ant swarm. In this case the purpose of the ant colony is not the optimization of some constraints but is an alternative way to explore the image content as diffused as possible, with the possibility of tuning the exploration parameters to the image content trying to better approach the Human Visual System behavior. For this reason, we used "termites", instead of ants, to underline the idea of the eager exploration of the image. The paper presents the spatial characteristics of locality and discusses differences in path exploration with other Retinex implementations. Furthermore a psychophysical experiment has been carried out on eight images with 20 observers and results indicate that a termite swarm should investigate a particular region of an image to find the local reference white.

[1]  Brian V. Funt,et al.  Investigations into Multi-Scale Retinex , 1998 .

[2]  John J. McCann,et al.  Capturing a black cat in shade: past and present of Retinex color appearance models , 2004, J. Electronic Imaging.

[3]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[4]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence: 4th International Workshop , ANTS 2004. Proceedings , 2004 .

[5]  Alessandro Rizzi,et al.  The Art and Science of HDR Imaging: McCann/The Art and Science of HDR Imaging , 2011 .

[6]  M. Dorigo,et al.  Ant System: An Autocatalytic Optimizing Process , 1991 .

[7]  Alessandro Rizzi,et al.  A computational approach to color adaptation effects , 2000, Image Vis. Comput..

[8]  Peng Huang,et al.  A Novel Image Segmentation Algorithm Based on Artificial Ant Colonies , 2007, MIMI.

[9]  Roberto Montagna,et al.  Constrained pseudo-Brownian motion and its application to image enhancement. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Hamid R. Tizhoosh,et al.  Image Thresholding Using Ant Colony Optimization , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[11]  Alessandro Rizzi,et al.  Spatio-Temporal Retinex-Inspired Envelope with Stochastic Sampling: A Framework for Spatial Color Algorithms , 2011 .

[12]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[13]  Mark D. Fairchild,et al.  Meet iCAM: A Next-Generation Color Appearance Model , 2002, Color Imaging Conference.

[14]  Mark D. Fairchild,et al.  iCAM06: A refined image appearance model for HDR image rendering , 2007, J. Vis. Commun. Image Represent..

[15]  Zu-Ren Feng,et al.  Ant colony optimization for image segmentation , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[16]  Mohamed Batouche,et al.  Unsupervised Image Segmentation Using a Colony of Cooperating Ants , 2002, Biologically Motivated Computer Vision.

[17]  Jon Y. Hardeberg,et al.  Measuring perceptual contrast in digital images , 2012, J. Vis. Commun. Image Represent..

[18]  Joel Quintanilla-Domínguez,et al.  Edge detection using ant colony search algorithm and multiscale contrast enhancement , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[19]  Mark S. Drew,et al.  Removing Shadows From Images using Retinex , 2002, CIC.

[20]  K. Thangavel,et al.  Ant Colony System for Segmentation and Classification of Microcalcification in Mammograms , 2005 .

[21]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[22]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[23]  Mark D. Fairchild,et al.  The iCAM Framework for Image Appearance, Image Differences, and Image Quality , 2002 .

[24]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence, 6th International Conference, ANTS 2008, Brussels, Belgium, September 22-24, 2008. Proceedings , 2008, ANTS Conference.

[25]  Ebroul Izquierdo,et al.  Image Classification Using an Ant Colony Optimization Approach , 2006, SAMT.

[26]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[27]  Ingeborg Tastl,et al.  Definition & Use of the ISO 12640-3 Reference Color Gamut , 2006, Color Imaging Conference.

[28]  Alessandro Rizzi,et al.  A proposal for Contrast Measure in Digital Images , 2004, CGIV.

[29]  Chih-Cheng Hung,et al.  Ant colony optimization for the K-means algorithm in image segmentation , 2010, ACM SE '10.

[30]  Alessandro Rizzi,et al.  Random Spray Retinex: A New Retinex Implementation to Investigate the Local Properties of the Model , 2007, IEEE Transactions on Image Processing.

[31]  Ingeborg Tastl,et al.  Definition and use of the ISO 12640-3 reference colour gamut , 2006 .

[32]  Vitorino Ramos,et al.  Artificial Ant Colonies in Digital Image Habitats - A Mass Behaviour Effect Study on Pattern Recognition , 2004, ArXiv.

[33]  Carlo Gatta,et al.  From Retinex to Automatic Color Equalization: issues in developing a new algorithm for unsupervised color equalization , 2004, J. Electronic Imaging.