Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation

[1]  T. Gregorkiewicz,et al.  Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption , 2012, Nature Photonics.

[2]  C. A. Nelson,et al.  Direct mapping of hot-electron relaxation and multiplication dynamics in PbSe quantum dots. , 2012, Nano letters.

[3]  J. Luther,et al.  Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes. , 2012, Nano letters.

[4]  C. W. Wong,et al.  Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots. , 2011, Nano letters.

[5]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[6]  J. Valenta,et al.  Step-like enhancement of luminescence quantum yield of silicon nanocrystals. , 2011, Nature nanotechnology.

[7]  Patanjali Kambhampati,et al.  Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale , 2011 .

[8]  M. Beard Multiple Exciton Generation in Semiconductor Quantum Dots. , 2011, The journal of physical chemistry letters.

[9]  M. Bawendi,et al.  Perspective on the prospects of a carrier multiplication nanocrystal solar cell. , 2011, Nano letters.

[10]  E. Sargent,et al.  Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots , 2011 .

[11]  T. Gregorkiewicz,et al.  Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. , 2010, Nature nanotechnology.

[12]  O. Voznyy,et al.  Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals , 2010, 1010.0021.

[13]  A. Nozik Nanoscience and nanostructures for photovoltaics and solar fuels. , 2010, Nano letters.

[14]  Trevor L. Courtney,et al.  Bulklike hot carrier dynamics in lead sulfide quantum dots. , 2010, Nano letters.

[15]  V. Klimov,et al.  Apparent versus true carrier multiplication yields in semiconductor nanocrystals. , 2010, Nano letters.

[16]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[17]  R. R. Cooney,et al.  Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots , 2009 .

[18]  R. Schaller,et al.  New aspects of carrier multiplication in semiconductor nanocrystals. , 2008, Accounts of chemical research.

[19]  M. Bawendi,et al.  Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence , 2008, 0806.1966.

[20]  Kyoungsik Kim,et al.  Redshift of the excited state due to a nondegenerate biexciton in self-organized quantum dots , 2008 .

[21]  S. Myrskog,et al.  Carrier relaxation dynamics in lead sulfide colloidal quantum dots. , 2008, The journal of physical chemistry. B.

[22]  T. Gregorkiewicz,et al.  Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications , 2008 .

[23]  R. Schaller,et al.  Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. , 2007, Nano letters.

[24]  V. Klimov,et al.  Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states , 2007 .

[25]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[26]  V. Klimov Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. , 2007, Annual review of physical chemistry.

[27]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[28]  A. Zunger,et al.  Impact ionization can explain carrier multiplication in PbSe quantum dots. , 2006, Nano letters.

[29]  R. Schaller,et al.  Non-Poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. , 2006, Physical review letters.

[30]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[31]  A. Nozik,et al.  Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultra-High Efficiency Solar Photon Conversion , 2005, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[32]  R. Schaller,et al.  High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states , 2005 .

[33]  Thomas Elsaesser,et al.  Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction. , 2005, Physical review letters.

[34]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[35]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[36]  A. Malko,et al.  Interplay between optical gain and photoinduced absorption in CdSe nanocrystals , 2004 .

[37]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[38]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[39]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[40]  Jürgen H. Werner,et al.  Solar cell efficiency and carrier multiplication in Si1−xGex alloys , 1998 .

[41]  Jasprit Singh,et al.  Rapid carrier relaxation in In 0.4 Ga 0.6 A s / G a A s quantum dots characterized by differential transmission spectroscopy , 1998 .

[42]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[43]  Kurz,et al.  Biexciton effects in femtosecond nonlinear transmission of semiconductor quantum dots. , 1994, Physical review. B, Condensed matter.

[44]  Wolfe,et al.  Response of excitonic absorption spectra to photoexcited carriers in GaAs quantum wells. , 1992, Physical review. B, Condensed matter.

[45]  Lindberg,et al.  Theory of optically excited intrinsic semiconductor quantum dots. , 1990, Physical review. B, Condensed matter.

[46]  Lindberg,et al.  Biexcitons in semiconductor quantum dots. , 1990, Physical review letters.

[47]  Tu,et al.  Collision broadening of two-dimensional excitons in a GaAs single quantum well. , 1989, Physical review. B, Condensed matter.

[48]  Bányai Asymptotic biexciton "binding energy" in quantum dots. , 1989, Physical review. B, Condensed matter.

[49]  Lindberg,et al.  Third-order optical nonlinearities in semiconductor microstructures. , 1988, Physical review. B, Condensed matter.

[50]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .