Analysis of PSLQ, an integer relation finding algorithm
暂无分享,去创建一个
[1] Claus-Peter Schnorr,et al. Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.
[2] H. Ferguson. A short proof of the existence of vector Euclidean algorithms , 1986 .
[3] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[4] Fritz Schweiger,et al. Multidimensional continued fractions , 2000 .
[5] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[6] D. W. Masser,et al. Vanishing sums in function fields , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Kenneth J. Giuliani. Factoring Polynomials with Rational Coeecients , 1998 .
[8] Thomas L. Heath,et al. Thirteen Books of Euclid's Elements , 1911, The Mathematical Gazette.
[9] Claus-Peter Schnorr,et al. A More Efficient Algorithm for Lattice Basis Reduction , 1988, J. Algorithms.
[10] Jeffrey C. Lagarias,et al. Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.
[11] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[12] Claus-Peter Schnorr,et al. A Stable Integer Relation Algorithm , 1994 .
[13] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] László Lovász,et al. The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..
[16] Jonathan M. Borwein,et al. Experimental Evaluation of Euler Sums , 1994, Exp. Math..
[17] Paul Kutler,et al. A Polynomial Time, Numerically Stable Integer Relation Algorithm , 1998 .
[18] Donald E. Knuth,et al. The Art of Computer Programming, Vol. 2 , 1981 .
[19] G. M.,et al. The Thirteen Books of Euclid's Elements , 1909, Nature.
[20] R. Forcade,et al. Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two , 1979 .
[21] David Bailey,et al. On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..
[22] Michael Pohst,et al. Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.
[23] Helaman R. P. Ferguson,et al. A Noninductive GL(n, Z) Algorithm That Constructs Integral Linear Relations for n Z-Linearly Dependent Real Numbers , 1987, J. Algorithms.
[24] C. Jacobi,et al. Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. , 1868 .
[25] David H. Bailey,et al. Numerical results on the transcendence of constants involving pi, e, and Euler's constant , 1988 .
[26] David H. Bailey,et al. Multiprecision Translation and Execution of Fortran Programs , 1993 .
[27] O. Perron,et al. Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .
[28] D. Fowler. Ratio in early Greek mathematics , 1979 .
[29] G. Shimura. Fractional and Trigonometric Expressions for Matrices , 1994 .
[30] David H. Bailey,et al. A Fortran 90-based multiprecision system , 1995, TOMS.
[31] Jeffrey C. Lagarias,et al. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice , 1990, Comb..
[32] Asmus L. Schmidt. Diophantine approximation of complex numbers , 1975, Classical and Quantum Models and Arithmetic Problems.