Analysis of PSLQ, an integer relation finding algorithm

Let K be either the real, complex, or quaternion number system and let O(K) be the corresponding integers. Let x = (x 1 ,...,x n ) be a vector in K n . The vector x has an integer relation if there exists a vector m = (m 1 ,...,m n ) ∈ O(K) n , m ¬= 0, such that m 1 x 1 + m 2 x 2 +... + m n x n = 0. In this paper we define the parameterized integer relation construction algorithm PSLQ(τ), where the parameter τ can be freely chosen in a certain interval. Beginning with an arbitrary vector x = (x 1 ,...,x n ) ∈ K n , iterations of PSLQ(τ) will produce lower bounds on the norm of any possible relation for x. Thus PSLQ(τ) can be used to prove that there are no relations for x of norm less than a given size. Let M x be the smallest norm of any relation for x. For the real and complex case and each fixed parameter τ in a certain interval, we prove that PSLQ(τ) constructs a relation in less than O(n 3 + n 2 logM x ) iterations.

[1]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[2]  H. Ferguson A short proof of the existence of vector Euclidean algorithms , 1986 .

[3]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[4]  Fritz Schweiger,et al.  Multidimensional continued fractions , 2000 .

[5]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[6]  D. W. Masser,et al.  Vanishing sums in function fields , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Kenneth J. Giuliani Factoring Polynomials with Rational Coeecients , 1998 .

[8]  Thomas L. Heath,et al.  Thirteen Books of Euclid's Elements , 1911, The Mathematical Gazette.

[9]  Claus-Peter Schnorr,et al.  A More Efficient Algorithm for Lattice Basis Reduction , 1988, J. Algorithms.

[10]  Jeffrey C. Lagarias,et al.  Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.

[11]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[12]  Claus-Peter Schnorr,et al.  A Stable Integer Relation Algorithm , 1994 .

[13]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  László Lovász,et al.  The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..

[16]  Jonathan M. Borwein,et al.  Experimental Evaluation of Euler Sums , 1994, Exp. Math..

[17]  Paul Kutler,et al.  A Polynomial Time, Numerically Stable Integer Relation Algorithm , 1998 .

[18]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[19]  G. M.,et al.  The Thirteen Books of Euclid's Elements , 1909, Nature.

[20]  R. Forcade,et al.  Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two , 1979 .

[21]  David Bailey,et al.  On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..

[22]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[23]  Helaman R. P. Ferguson,et al.  A Noninductive GL(n, Z) Algorithm That Constructs Integral Linear Relations for n Z-Linearly Dependent Real Numbers , 1987, J. Algorithms.

[24]  C. Jacobi,et al.  Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. , 1868 .

[25]  David H. Bailey,et al.  Numerical results on the transcendence of constants involving pi, e, and Euler's constant , 1988 .

[26]  David H. Bailey,et al.  Multiprecision Translation and Execution of Fortran Programs , 1993 .

[27]  O. Perron,et al.  Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus , 1907 .

[28]  D. Fowler Ratio in early Greek mathematics , 1979 .

[29]  G. Shimura Fractional and Trigonometric Expressions for Matrices , 1994 .

[30]  David H. Bailey,et al.  A Fortran 90-based multiprecision system , 1995, TOMS.

[31]  Jeffrey C. Lagarias,et al.  Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice , 1990, Comb..

[32]  Asmus L. Schmidt Diophantine approximation of complex numbers , 1975, Classical and Quantum Models and Arithmetic Problems.