Optimal power flow using group search optimizer with intraspecific competition and lévy walk

This paper presents an enhanced group search optimizer (GSO), group search optimizer with intraspecific competition and lévy walk (GSOICLW), to solve the optimal power flow (OPF) problem. GSOICLW s a more biologically realistic algorithm and performs better balance between global and local searching than GSO n hat intraspecific competition IC) and lévy walk (LW) are introduced o GSO. GSOICLW is tested or the OPF problem on the IEEE 30-bus power system, with green house gases emission constraint considered. Simulation results demonstrate the accuracy and reliability of the proposed algorithm, compared with other evolutionary algorithms EAs).

[1]  H. Happ,et al.  Large Scale Optimal Power Flow , 1982, IEEE Transactions on Power Apparatus and Systems.

[2]  Kit Po Wong,et al.  Evolutionary programming based optimal power flow algorithm , 1999, 1999 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364).

[3]  Daniel I Bolnick,et al.  Intraspecific competition drives increased resource use diversity within a natural population , 2007, Proceedings of the Royal Society B: Biological Sciences.

[4]  D. Bolnick Intraspecific competition favours niche width expansion in Drosophila melanogaster , 2001, Nature.

[5]  Q. Henry Wu,et al.  Optimal reactive power dispatch with wind power integrated using group search optimizer with intraspecific competition and lévy walk , 2014, Knowl. Based Syst..

[6]  T. Saravanan,et al.  Optimal Power Flow Using Particle Swarm Optimization , 2014 .

[7]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[8]  E. Prempain,et al.  An improved particle swarm optimization for optimal power flow , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[9]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[10]  Hua Wei,et al.  An interior point nonlinear programming for optimal power flow problems with a novel data structure , 1997 .

[11]  R. MacLean,et al.  Adaptive radiation in microbial microcosms. , 2005, Journal of evolutionary biology.

[12]  G. L. Torres,et al.  An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates , 1998 .

[13]  A. Bakirtzis,et al.  Optimal Power Flow by Enhanced Genetic Algorithm , 2002, IEEE Power Engineering Review.

[14]  Weerakorn Ongsakul,et al.  Optimal Power Flow by Improved Evolutionary Programming , 2006 .

[15]  Lawrence Hasdorff,et al.  Economic Dispatch Using Quadratic Programming , 1973 .

[16]  K. Trenberth,et al.  Modern Global Climate Change , 2003, Science.

[17]  V. Quintana,et al.  A Penalty Function-Linear Programming Method for Solving Power System Constrained Economic Operation Problems , 1984, IEEE Transactions on Power Apparatus and Systems.

[18]  Kit Po Wong,et al.  Evolutionary programming based optimal power flow algorithm , 1999 .

[19]  Philip H. Ramsey Nonparametric Statistical Methods , 1974, Technometrics.

[20]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Alan A. Berryman,et al.  Principles of Population Dynamics and Their Application , 2020 .

[22]  F. Galiana,et al.  Economic Dispatch Using the Reduced Hessian , 1982, IEEE Power Engineering Review.

[23]  Norman L Carreck,et al.  Honeybees perform optimal scale-free searching flights when attempting to locate a food source , 2007, Journal of Experimental Biology.

[24]  Q. Henry Wu,et al.  Paired-bacteria optimiser - A simple and fast algorithm , 2011, Inf. Process. Lett..

[25]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  A. Nicholson An outline of the dynamics of animal populations. , 1954 .