Overview of the Phase Space Formulation of Quantum Mechanics with Application to Quantum Technologies

The phase-space formulation of quantum mechanics has recently seen increased use in testing quantum technologies, including metho ds of tomography for state verification and device validation. Here, an overview of quantum mechanics in phase space is presented. The formulation to generate a generalized phase-space function for any arbitrary quantum system is shown, such as the Wigner and Weyl functions along with the asso ciated Q and P functions. Examples of how these different formulations have b een used in quantum technologies are provided, with a focus on discrete quantum systems, qubits in particular. Also provided are some results that, to the authors' knowledge, have not been published elsewhere. These results provide insight into the relation between different representations of phase space and how the phase-space representation is a powerful tool in understanding quantum information and quantum technologies.

[1]  Confined quantum Zeno dynamics of a watched atomic arrow , 2014, 1402.0111.

[2]  M. Scully,et al.  Joint Wigner distribution for spin-1/2 particles , 1986 .

[3]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[4]  Russell Rundle Quantum state visualization, verification and validation via phase space methods , 2020 .

[5]  Knight,et al.  Sampling entropies and operational phase-space measurement. I. General formalism. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[7]  V. I. Man'ko,et al.  Symplectic tomography as classical approach to quantum systems , 1996 .

[8]  G. Agarwal,et al.  Atomic Schrödinger cat states , 1997 .

[9]  S. Filipp,et al.  Observation of entanglement between itinerant microwave photons and a superconducting qubit. , 2012, Physical review letters.

[10]  Martin Bohmann,et al.  Experimental Certification of Nonclassicality via Phase-Space Inequalities. , 2021, Physical review letters.

[11]  B'alint Koczor,et al.  Time evolution of coupled spin systems in a generalized Wigner representation , 2016, Annals of Physics.

[12]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[13]  R. Raussendorf,et al.  Wigner Function Negativity and Contextuality in Quantum Computation on Rebits , 2014, 1409.5170.

[14]  S. Glaser,et al.  Wigner tomography of multispin quantum states , 2017, 1707.08465.

[15]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[16]  Margarita A. Man'ko,et al.  SU(2) Symmetry of Qubit States and Heisenberg-Weyl Symmetry of Systems with Continuous Variables in the Probability Representation of Quantum Mechanics , 2020, Symmetry.

[17]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[18]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[19]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[20]  B'alint Koczor,et al.  Continuous phase-space representations for finite-dimensional quantum states and their tomography , 2020 .

[21]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[22]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[23]  A. Royer Wigner function as the expectation value of a parity operator , 1977 .

[24]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[25]  Marco Barbieri,et al.  Wigner function reconstruction of experimental three-qubit GHZ and W states , 2017 .

[26]  Nicolas Delfosse,et al.  Equivalence between contextuality and negativity of the Wigner function for qudits , 2016, 1610.07093.

[27]  V. I. Lebedev,et al.  Quadratures on a sphere , 1976 .

[28]  E. Sudarshan,et al.  A parametrization of bipartite systems based on SU(4) Euler angles , 2002, math-ph/0202002.

[29]  Peter D. Newell,et al.  Correction: Corrigendum: Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster , 2015, Nature Communications.

[30]  Mark J. Everitt,et al.  Simple procedure for phase-space measurement and entanglement validation , 2017 .

[31]  A. Vourdas Phase space methods for finite quantum systems , 1997 .

[32]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[33]  Jaehak Lee,et al.  Verifying nonclassicality beyond negativity in phase space , 2020 .

[35]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[36]  J. Sperling,et al.  Conditional Hybrid Nonclassicality. , 2017, Physical review letters.

[37]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  G. Crooks On Measures of Entropy and Information , 2015 .

[39]  Bálint Koczor,et al.  On phase-space representations of spin systems and their relations to infinite-dimensional quantum states , 2019 .

[40]  Leonhardt Quantum-state tomography and discrete Wigner function. , 1995, Physical review letters.

[41]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[42]  Gang Li,et al.  Measurement of complete and continuous Wigner functions for discrete atomic systems , 2017, 1706.08676.

[43]  V. M. Dwyer,et al.  Visualization of correlations in hybrid discrete—continuous variable quantum systems , 2020, Journal of Physics Communications.

[44]  Lütkenhaus,et al.  Nonclassical effects in phase space. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  J. Romero,et al.  A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group , 2008 .

[46]  S. Glaser,et al.  Wigner process tomography: Visualization of spin propagators and their spinor properties , 2018, Physical Review A.

[47]  A. Barasiński,et al.  Negativity volume of the generalized Wigner function as an entanglement witness for hybrid bipartite states , 2018, Scientific Reports.

[48]  W. Vogel,et al.  Quasiprobability distributions for quantum-optical coherence and beyond , 2019, Physica Scripta.

[49]  Seyed Javad Akhtarshenas,et al.  Revealing quantum correlation by negativity of the Wigner function , 2016, Quantum Inf. Process..

[50]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[51]  Ingo Roth,et al.  Theory of Quantum System Certification , 2020, PRX Quantum.

[52]  Robert W. Spekkens,et al.  All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed set of operational equivalences , 2017, Physical Review A.

[53]  B'alint Koczor,et al.  Continuous phase spaces and the time evolution of spins: star products and spin-weighted spherical harmonics , 2018, Journal of Physics A: Mathematical and Theoretical.

[54]  Discrete Moyal-type representations for a spin , 2000, quant-ph/0004022.

[55]  S. Chaturvedi,et al.  Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems-a Dirac-inspired view , 2006 .

[56]  B'alint Koczor,et al.  Phase Spaces, Parity Operators, and the Born–Jordan Distribution , 2018, Annales Henri Poincaré.

[57]  C. Zachos,et al.  A Concise Treatise on Quantum Mechanics in Phase Space , 2014 .

[58]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[59]  Agarwal,et al.  Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[60]  J. Gracia-Bond́ıa,et al.  The Moyal representation for spin , 1989 .

[61]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[62]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[63]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[64]  Extended Cahill-Glauber formalism for finite-dimensional spaces: I. Fundamentals , 2005, quant-ph/0503054.

[65]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[66]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[67]  Mazyar Mirrahimi,et al.  Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality , 2015, Nature Communications.

[68]  W. Vogel,et al.  Quantification of Nonclassicality , 2009, 0904.3390.

[69]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[70]  Quasiprobability and Probability Distributions for Spin-1/2 States , 2001, quant-ph/0102038.

[71]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[72]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[73]  M. Fadel,et al.  Split spin-squeezed Bose–Einstein condensates , 2018, New Journal of Physics.

[74]  Morad El Baz,et al.  The negativity of Wigner function as a measure of quantum correlations , 2016, Quantum Inf. Process..

[75]  I. Walmsley,et al.  Quasiprobability representation of quantum coherence , 2018, Physical Review A.

[76]  M. Kontsevich Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.

[77]  J. Laurat,et al.  Engineering optical hybrid entanglement between discrete- and continuous-variable states , 2019, New Journal of Physics.

[78]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[79]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[80]  M. Scully,et al.  Spin quasi-distribution functions , 1994 .

[81]  Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem , 2004, quant-ph/0410117.

[82]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[83]  M. A. Marchiolli,et al.  On the discrete Wigner function for $\mathrm{SU(N)}$ , 2019, Journal of Physics A: Mathematical and Theoretical.

[84]  R. Schnabel,et al.  Direct sampling of negative quasiprobabilities of a squeezed state. , 2011, Physical review letters.

[85]  R. Hudson When is the wigner quasi-probability density non-negative? , 1974 .

[86]  M. A. Marchiolli,et al.  Quasiprobability distribution functions for periodic phase-spaces: I. Theoretical Aspects , 2006, quant-ph/0602216.

[87]  P. Combe,et al.  A stochastic treatment of the dynamics of an integer spin , 1988 .

[88]  N. Levanon,et al.  RADAR SIGNALS , 2013 .

[89]  J. Heyvaerts,et al.  Covariant Wigner function approach for relativistic quantum plasmas , 1978 .

[90]  Kae Nemoto,et al.  Generalized coherent states for SU(n) systems , 2000 .

[91]  Shin,et al.  Wigner function of relativistic spin-1/2 particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[92]  Marlan O. Scully,et al.  How to make quantum mechanics look like a hidden-variable theory and vice versa , 1983 .

[93]  William K. Wootters Picturing qubits in phase space , 2004, IBM J. Res. Dev..

[94]  M. Beck Introductory Quantum Optics , 2005 .

[95]  D. K. Ferry,et al.  Recent advances in Wigner function approaches , 2018, Applied Physics Reviews.

[96]  Samrat Kumar Dey,et al.  Effects of Machine Learning Approach in Flow-Based Anomaly Detection on Software-Defined Networking , 2019, Symmetry.

[97]  Andreas Blass,et al.  Negative probability , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[98]  G. Rempe,et al.  Deterministic creation of entangled atom–light Schrödinger-cat states , 2018, Nature Photonics.

[99]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[100]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[101]  Jian-Wei Pan,et al.  Toolbox for entanglement detection and fidelity estimation , 2007, 0706.2432.

[102]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[103]  P. Torma,et al.  Topological states with broken translational and time-reversal symmetries in a honeycomb-triangular lattice , 2014, 1409.6563.

[104]  J. Sperling,et al.  Probing nonclassicality with matrices of phase-space distributions , 2020, Quantum.

[105]  Alessandro Ferraro,et al.  Reconstructing the quantum state of oscillator networks with a single qubit , 2011, 1109.2022.

[106]  M. Byrd Differential geometry on SU(3) with applications to three state systems , 1998, math-ph/9807032.

[107]  Kae Nemoto,et al.  Wigner Functions for Arbitrary Quantum Systems. , 2016, Physical review letters.

[108]  Kevin Cahill,et al.  Ordered Expansions in Boson Amplitude Operators , 1969 .

[109]  U. Fano GEOMETRICAL CHARACTERIZATION OF NUCLEAR STATES AND THE THEORY OF ANGULAR CORRELATIONS , 1953 .

[110]  A. Klimov,et al.  General approach to SU(n) quasi-distribution functions , 2010, 1008.2920.

[111]  Steffen J. Glaser,et al.  Visualizing operators of coupled spin systems , 2014, 1409.5417.

[112]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[113]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[114]  A. Klimov,et al.  Moyal-like form of the star product for generalized SU(2) Stratonovich-Weyl symbols , 2002 .

[115]  K. C. Tan,et al.  Negativity of Quasiprobability Distributions as a Measure of Nonclassicality. , 2019, Physical review letters.

[116]  Heng Shen,et al.  Quantum state tomography of a single electron spin in diamond with Wigner function reconstruction , 2018, Applied Physics Letters.

[117]  J. Cariñena,et al.  Relativistic quantum kinematics in the Moyal representation , 1990 .

[118]  E. Sudarshan,et al.  Some Applications for an Euler Angle Parameterization of SU(N) and U(N) , 2002, quant-ph/0212075.

[119]  Paul Adrien Maurice Dirac,et al.  Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[120]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[121]  E. Sudarshan,et al.  Generalized Euler angle parametrization for SU(N) , 2002, math-ph/0205016.

[122]  Overcoming decoherence in the collapse and revival of spin Schrödinger-cat states , 2011, 1101.1420.

[123]  Julien Laurat,et al.  Remote creation of hybrid entanglement between particle-like and wave-like optical qubits , 2013, Nature Photonics.

[124]  A. Klimov,et al.  FAST TRACK COMMUNICATION: General approach to \mathfrak {SU}(n) quasi-distribution functions , 2010 .

[125]  Nicolas Delfosse,et al.  Contextuality and Wigner-function negativity in qubit quantum computation , 2015, 1511.08506.

[126]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[127]  V. M. Dwyer,et al.  Quantum invariants and the graph isomorphism problem , 2017, Physical Review A.

[128]  S. Glaser,et al.  Symmetry-adapted decomposition of tensor operators and the visualization of coupled spin systems , 2018, Journal of Physics A: Mathematical and Theoretical.

[129]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[130]  Kevin Cahill,et al.  DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .

[131]  C. Brif,et al.  Phase space formulation of quantum mechanics and quantum state reconstruction for physical systems with Lie group symmetries , 1998, quant-ph/9809052.

[132]  V. M. Dwyer,et al.  General approach to quantum mechanics as a statistical theory , 2017, Physical Review A.

[133]  伏見 康治,et al.  Some formal properties of the density matrix , 1940 .

[134]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[135]  Gu Group-theoretical formalism of quantum mechanics based on quantum generalization of characteristic functions. , 1985, Physical review. A, General physics.

[136]  Jean-Raymond Abrial,et al.  On B , 1998, B.

[137]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[138]  A. Klimov,et al.  SU(1, 1) covariant s-parametrized maps , 2020, 2012.02993.

[139]  L. Davidovich,et al.  Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps , 1997 .

[140]  Relativistic Wigner function approach to neutrino propagation in matter , 1998, hep-ph/9810347.

[141]  Fritz Bopp La mécanique quantique est-elle une mécanique statistique classique particulière ? , 1956 .

[142]  V. Lebedev Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion☆ , 1975 .

[143]  Minsu Kang,et al.  Properties of hybrid entanglement between discrete- and continuous-variable states of light , 2015 .

[144]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[145]  J. Sperling,et al.  Continuous sampling of the squeezed-state nonclassicality , 2014, 1411.6869.

[146]  H. Carmichael Statistical Methods in Quantum Optics 2 , 2008 .

[147]  SU(N)-symmetric quasi-probability distribution functions , 2011, 1108.2075.

[148]  Wojciech Słomczyński,et al.  The Monge distance between quantum states , 1997, quant-ph/9711011.

[149]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[150]  Quantum computers in phase space , 2002, quant-ph/0204149.

[151]  H. J. Groenewold On the Principles of Elementary Quantum Mechanics , 1946 .

[152]  V. M. Dwyer,et al.  Visualizing spin degrees of freedom in atoms and molecules , 2019, Physical Review A.

[153]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[154]  A. Wehrl General properties of entropy , 1978 .

[155]  C. Gerving,et al.  Spin-nematic squeezed vacuum in a quantum gas , 2011, Nature Physics.

[156]  H. Fan,et al.  Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits , 2019, Science.