Towards objective performance analysis for estimation of complex motion: analytic motion modeling, filter optimization, and test sequences

This paper deals with several aspects towards a more objective performance analysis of low-level motion analysis. A generalized spatiotemporal filter formulation and motion modeling in image sequences is introduced and used to design optimal motion estimators and to perform analytic studies.

[1]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[2]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[3]  Bernd Jähne Motion Determination in Space-Time Images , 1990, ECCV.

[4]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[5]  Bernd Jähne,et al.  Performance Characteristics of Low-level Motion Estimators in Spatiotemporal Images , 1998, Theoretical Foundations of Computer Vision.

[6]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[7]  Hanno Scharr,et al.  Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung , 1997, DAGM-Symposium.

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[10]  Bernd Jähne,et al.  Spatio-Temporal Image Processing , 1993, Lecture Notes in Computer Science.

[11]  B. J Hne,et al.  Spatio - temporal Image Processing: Theory and Scientific Applications , 1991 .

[12]  Eero P. Simoncelli Bayesian multi-scale differential optical flow , 1999 .

[13]  David J. Fleet,et al.  Stable estimation of image orientation , 1994, Proceedings of 1st International Conference on Image Processing.

[14]  Richard G. Lane,et al.  Determining optical flow using a differential method , 1997, Image Vis. Comput..

[15]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.