Some interlacing properties of the Schur complement of a Hermitian matrix

Abstract For a Hermitian matrix H with nonsingular principal submatrix A, it is shown that the eigenvalues of the Moore-Penrose inverse of the Schur complement (H/A) of A in H interlace the eigenvalues of the Moore-Penrose inverse of H. Moreover, if H is semidefinite, it is shown that the eigenvalues of (H/A) interlace the eigenvalues of H.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  T. Markham,et al.  Generalized Inverse Formulas Using the Schur Complement , 1974 .

[3]  E. Haynsworth Determination of the inertia of a partitioned Hermitian matrix , 1968 .

[4]  Ky Fan,et al.  Imbedding Conditions for Hermitian and Normal Matrices , 1957, Canadian Journal of Mathematics.

[5]  F. R. Gantmakher The Theory of Matrices , 1984 .