Lipschitz selections of set-valued mappings and Helly’s theorem

AbstractWe prove a Helly-type theorem for the family of all m-dimensional convex compact subsets of a Banach space X. The result is formulated in terms of Lipschitz selections of set-valued mappings from a metric space (M, ρ) into this family.Let M be finite and let F be such a mapping satisfying the following condition: for every subset M′ ⊂ M consisting of at most 2m+1 points, the restriction F¦M′ of F to M′ has a selection fM′ (i. e., fM′(x) ∈ F(x) for all x ∈ M′) satisfying the Lipschitz condition ‖ƒM′(x) − ƒM′(y)‖X ≤ ρ(x, y), x, y ∈ M′. Then F has a Lipschitz selection ƒ: M → X such that ‖ƒ(x) − ƒ(y)‖X ≤ γρ(x,y), x, y ∈ M where γ is a constant depending only on m and the cardinality of M. We prove that in general, the upper bound of the number of points in M′, 2m+1, is sharp. If dim X = 2, then the result is true for arbitrary (not necessarily finite) metric space. We apply this result to Whitney’s extension problem for spaces of smooth functions. In particular, we obtain a constructive necessary and sufficient condition for a function defined on a closed subset ofR2to be the restriction of a function from the Sobolev space W∞2(R2).A similar result is proved for the space of functions onR2satisfying the Zygmund condition.

[1]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[2]  Pavel Shvartsman,et al.  Generalizations of Whitney's extension theorem , 1994 .

[3]  Centres of Convex Sets inLpMetrics , 1996 .

[4]  Hassler Whitney,et al.  Differentiable Functions Defined in Closed Sets. I , 1934 .

[5]  Zvi Artstein Extensions of Lipschitz selections and an application to differential inclusions , 1991 .

[6]  Pavel Shvartsman Traces of functions of Zygmund class , 1987 .

[7]  Krzysztof Przeslawski,et al.  Lipschitz retracts, selectors, and extensions. , 1995 .

[8]  Анатолий Вячеславович Маринов,et al.  Константы Липшица оператора метрического $\varepsilon$-проектирования в пространствах с заданными модулями выпуклости и гладкости@@@The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness , 1998 .

[9]  The trace of the Zygmund Class ΛK(R) closed sets and interpolating polynomials , 1985 .

[10]  V. Boltyanski,et al.  Excursions into Combinatorial Geometry , 1996 .

[11]  Krzysztof Przesławski,et al.  Continuity properties of selectors and Michael's theorem. , 1989 .

[12]  E. Asplund Comparison Between Plane Symmetric Convex Bodies and Parallelograms. , 1960 .

[13]  Pavel Shvartsman,et al.  The Whitney problem of existence of a linear extension operator , 1997 .

[14]  On Lipschitz selections of affine-set valued mappings , 2001 .

[15]  F. Deutsch,et al.  Strong uniqueness, Lipschitz continuity, and continuous selections for metric projections , 1991 .

[16]  G. C. Shephard The Steiner point of a convex polytope , 1966 .

[17]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[18]  Duvsan Repovvs,et al.  Continuous Selections of Multivalued Mappings , 1998, 1401.2257.

[19]  Rolf Schneider,et al.  On steiner points of convex bodies , 1971 .

[20]  J. Mattioli Minkowski operations and vector spaces , 1995 .

[21]  The trace of jet space ^{}Λ^{} to an arbitrary closed subset of ℝⁿ , 1998 .

[22]  Vasant A. Ubhaya,et al.  Lipschitzian selections in best approximation by continuous functions , 1990 .

[23]  S. H. Park,et al.  Characterizations of continuous and Lipschitz continuous metric selections in normed linear spaces , 1989 .

[24]  G. Glaeser Étude de Quelques Algèbres Tayloriennes , 1958 .

[25]  Pavel Shvartsman,et al.  Whitney’s extension problem for multivariate ^{1,}-functions , 2001 .