Approximating the universal active element

The classification of universal amplifiers presented in this paper places all operational amplifiers and current conveyors known from the literature into a common framework, together with abstract concepts such as the universal active element and the nullor. Our approach is new in that we base it on four-terminal theory, which results in a classification that is more extensive but not more complex than classifications derived using two-port theory. It turns out that our classification contains a new type of operational amplifier, which we call current-feedback operational transconductance amplifier (CFB OTA), and also a new class of voltage-inverting current conveyors. We then demonstrate that our classification is very closely related to integrated-amplifier design by showing how all operational amplifiers and current conveyors can be implemented in CMOS using only a few CMOS circuits. Since the basic ideas behind CMOS and bipolar circuits are very similar, this paper is not process specific and can be seen as an attempt to bridge the gap between amplifier theory and amplifier design that has become ever wider in the past few years.

[1]  Sergio Franco Analytical foundations of current-feedback amplifiers , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[2]  Alfonso Carlosena,et al.  Analog universal active device: theory, design and applications , 1995, Proceedings of International Conference on Microelectronics.

[3]  Gordon W. Roberts,et al.  Adjoint networks revisited , 1990, IEEE International Symposium on Circuits and Systems.

[4]  A. Arbel,et al.  Output stage for current-mode feedback amplifiers, theory and applications , 1992 .

[5]  George S. Moschytz,et al.  A classification of current-mode single-amplifier biquads based on a voltage-to-current transformation , 1994 .

[6]  George S. Moschytz,et al.  Nullators and norators in voltage to current mode transformations , 1993, Int. J. Circuit Theory Appl..

[7]  Christofer Toumazou,et al.  Analog amplifiers: classification and generalization , 1996 .

[8]  Derek F. Bowers The so-called current-feedback operational amplifier-technological breakthrough or engineering curiosity? , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[9]  Z. Wang Analytical determination of output resistance and DC matching errors in MOS current mirrors , 1990 .

[10]  George S. Moschytz,et al.  TUNABLE CCII-MOSFET-C FILTER BIQUADS FOR VIDEO FREQUENCIES , 1997 .

[11]  Barry Harvey Current feedback opamp limitations: a state-of-the-art review , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[12]  S. Webb,et al.  Applications of a commercially available current conveyor , 1991 .

[13]  Gordon W. Roberts,et al.  The current conveyor: history, progress and new results , 1990 .

[14]  Alain Fabre Third-generation current conveyor: a new helpful active element , 1995 .

[15]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[16]  W. Graham Richards,et al.  Art of electronics , 1983, Nature.

[17]  Kenneth C. Smith,et al.  The current conveyor—A new circuit building block , 1968 .

[18]  Igor Mucha Current operational amplifiers: Basic architecture, properties, exploitation and future , 1995 .

[19]  Alfonso Carlosena,et al.  Unified approach to the implementations of universal active devices , 1994 .

[20]  Kenneth R. Laker,et al.  Design of analog integrated circuits and systems , 1994 .

[21]  Christofer Toumazou,et al.  Current-feedback versus voltage feedback amplifiers: history, insight and relationships , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[22]  Hanspeter Schmid,et al.  A tunable, video-frequency, low-power, single-amplifier biquadratic filter in CMOS , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[23]  Luis Serrano,et al.  On the search for a "universal" active element , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[24]  J. Wulleman A low-power high-gain transresistance BiCMOS pulse amplifier for capacitive detector readout , 1997, IEEE J. Solid State Circuits.

[25]  I. Mucha Low-voltage current operational amplifier with a very low current consumption , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[26]  Chung-Yu Wu,et al.  Design techniques for tunable transresistance-C VHF bandpass filters , 1994 .

[27]  B. D. H. Tellegen La recherche pour una série compléte d’éléments de circuit ideaux non-linéaires , 1955 .

[28]  J.H. Huijsing,et al.  Monolithic nullor-a universal active network element , 1977, IEEE Journal of Solid-State Circuits.

[29]  A. Leuciuc Using nullors for realisation of inverse transfer functions and characteristics , 1997 .

[30]  Gaetano Palumbo,et al.  High-drive CMOS current amplifier , 1998 .

[31]  George S. Moschytz,et al.  Active-MOSFET-C single-amplifier biquadratic filters for video frequencies , 2000 .

[32]  Erik Bruun CMOS technology and current-feedback op-amps , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[33]  Gaetano Palumbo,et al.  A CMOS transresistance current amplifier , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[34]  Bram Nauta,et al.  A CMOS transconductance-C filter technique for very high frequencies , 1992 .

[35]  H. Carlin,et al.  Singular Network Elements , 1964 .

[36]  Johan H. Huijsing Operational floating amplifier , 1990 .

[37]  M. Banu,et al.  An elliptic continuous-time CMOS filter with on-chip automatic tuning , 1985, IEEE Journal of Solid-State Circuits.

[38]  W. Guggenbuhl,et al.  A versatile building block: the CMOS differential difference amplifier , 1987 .

[39]  Shen-Iuan Liu,et al.  CMOS differential difference current conveyors and their applications , 1996 .

[40]  T. Kaulberg A CMOS current-mode operational amplifier , 1993 .

[41]  W. Guggenbuhl,et al.  A high-swing, high-impedance MOS cascode circuit , 1990 .

[42]  M. Swamy,et al.  Network transposition and its application in synthesis , 1971, IEEE Transactions on Circuit Theory.

[43]  Gordon W. Roberts,et al.  A general class of current amplifier-based biquadratic filter circuits , 1992 .

[44]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[45]  Christofer Toumazou,et al.  Operational floating conveyor , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[46]  Erik Bruun Class AB CMOS first-generation current conveyor , 1995 .