Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time

[1]  Bernard M. E. Moret,et al.  Phylogenetic Inference , 2011, Encyclopedia of Parallel Computing.

[2]  Matthew A. Bertone,et al.  Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology , 2009, BMC Evolutionary Biology.

[3]  P. Somboon,et al.  Molecular phylogenetics and biogeography of the Neocellia Series of Anopheles mosquitoes in the Oriental Region. , 2009, Molecular phylogenetics and evolution.

[4]  P. M. Pedro,et al.  Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae) , 2009 .

[5]  J. Ribeiro,et al.  Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae , 2009, PloS one.

[6]  A. Diabaté,et al.  The molecular forms of Anopheles gambiae: a phenotypic perspective. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[7]  G. Duarte,et al.  The Mitochondrial Control Region of Blowflies (Diptera: Calliphoridae): A Hot Spot for Mitochondrial Genome Rearrangements , 2008, Journal of medical entomology.

[8]  C. Dye,et al.  World Malaria Report, 2008. , 2008 .

[9]  Lisa Mirabello,et al.  Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America , 2008, BMC Ecology.

[10]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[11]  L. Mirabello,et al.  The biogeography and population genetics of neotropical vector species , 2007, Heredity.

[12]  Thomas L. Turner,et al.  Locus- and population-specific selection and differentiation between incipient species of Anopheles gambiae. , 2007, Molecular biology and evolution.

[13]  Maria Anisimova,et al.  Phylogenomic analysis of natural selection pressure in Streptococcus genomes , 2007, BMC Evolutionary Biology.

[14]  C. Meiklejohn,et al.  Positive and negative selection on the mitochondrial genome. , 2007, Trends in genetics : TIG.

[15]  R. Wilkerson,et al.  A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. , 2007, Molecular phylogenetics and evolution.

[16]  L. Mirabello Molecular population genetics of the malaria vector Anopheles darlingi throughout Central and South America using mitochondrial, nuclear, and microsatellite markers , 2007 .

[17]  A. M. Azeredo-Espin,et al.  The Mitochondrial DNA Control Region of Muscidae Flies: Evolution and Structural Conservation in a Dipteran Context , 2007, Journal of Molecular Evolution.

[18]  L. Mirabello,et al.  Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America , 2006, Heredity.

[19]  L. P. Lounibos,et al.  Bloodmeal Hosts of Anopheles Species (Diptera: Culicidae) in a Malaria-Endemic Area of the Brazilian Amazon , 2006, Journal of medical entomology.

[20]  J. Krzywinski,et al.  Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. , 2006, Molecular phylogenetics and evolution.

[21]  Jonathan P. Bollback,et al.  Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. , 2006, The American journal of tropical medicine and hygiene.

[22]  Nicolas Galtier,et al.  Population Size Does Not Influence Mitochondrial Genetic Diversity in Animals , 2006, Science.

[23]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[24]  S. Ho,et al.  Molecular clocks: when times are a-changin'. , 2006, Trends in genetics : TIG.

[25]  K. Tamura,et al.  Replication Origin of Mitochondrial DNA in Insects , 2005, Genetics.

[26]  R. Nielsen,et al.  Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.

[27]  Johannes Müller,et al.  Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  Matthew W. Hahn,et al.  Genomic Islands of Speciation in Anopheles gambiae , 2005, PLoS biology.

[29]  J. Boore,et al.  Sequencing and comparing whole mitochondrial genomes of animals. , 2005, Methods in enzymology.

[30]  W. Wong,et al.  Bayes empirical bayes inference of amino acid sites under positive selection. , 2005, Molecular biology and evolution.

[31]  A. Beckenbach,et al.  Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). , 2005, Genome.

[32]  Douglas O. Clary,et al.  The mitochondrial DNA molecule ofDrosophila yakuba: Nucleotide sequence, gene organization, and genetic code , 2005, Journal of Molecular Evolution.

[33]  C. E. Cook The complete mitochondrial genome of the stomatopod crustacean Squilla mantis , 2005, BMC Genomics.

[34]  P. Arruda,et al.  The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). , 2004, Gene.

[35]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[36]  Chau-Ti Ting,et al.  Genes and speciation , 2001, Nature Reviews Genetics.

[37]  N. Perna,et al.  Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 1995, Journal of Molecular Evolution.

[38]  Nicole T. Perna,et al.  Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 2004, Journal of Molecular Evolution.

[39]  Xavier Messeguer,et al.  DnaSP, DNA polymorphism analyses by the coalescent and other methods , 2003, Bioinform..

[40]  J. Krzywinski,et al.  Molecular systematics of Anopheles: from subgenera to subpopulations. , 2003, Annual review of entomology.

[41]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[42]  Gregory Kucherov,et al.  mreps: efficient and flexible detection of tandem repeats in DNA , 2003, Nucleic Acids Res..

[43]  R. Carter Speculations on the origins of Plasmodium vivax malaria. , 2003, Trends in parasitology.

[44]  K. Day,et al.  Human migration, mosquitoes and the evolution of Plasmodium falciparum. , 2003, Trends in parasitology.

[45]  L. Weigt,et al.  Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeat‐containing regions in studies of population genetics and evolutionary history , 2002, Insect molecular biology.

[46]  R. Nielsen,et al.  Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. , 2002, Molecular biology and evolution.

[47]  Joseph P Bielawski,et al.  Accuracy and power of bayes prediction of amino acid sites under positive selection. , 2002, Molecular biology and evolution.

[48]  M. Miles,et al.  An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. , 2002, Molecular biology and evolution.

[49]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[50]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[51]  G. Poinar,et al.  Anopheles (Nyssorhynchus) dominicanus sp. n. (Diptera: Culicidae) from Dominican Amber , 2000 .

[52]  L. P. Lounibos,et al.  Malaria Vector Heterogeneity in South America , 2000 .

[53]  F. Ayala,et al.  Population structure and recent evolution of Plasmodium falciparum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[55]  C. Gissi,et al.  Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. , 1999, Gene.

[56]  M. T. Marrelli,et al.  Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae). , 1999, Journal of medical entomology.

[57]  Y. Rubio-Palis,et al.  Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. , 1999, The American journal of tropical medicine and hygiene.

[58]  W. Black,et al.  Mosquito genomes: structure, organization, and evolution. , 1999, Advances in genetics.

[59]  H. A. Orr,et al.  The evolutionary genetics of speciation. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[60]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[61]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[62]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[63]  R. Macphee,et al.  Age and Paleogeographical Origin of Dominican Amber , 1996, Science.

[64]  J. Charlwood,et al.  Biological variation in Anopheles darlingi Root. , 1996, Memorias do Instituto Oswaldo Cruz.

[65]  J. Powell,et al.  Evolution of the mitochondrial DNA control region in the Anopheles gambiae complex , 1996, Insect molecular biology.

[66]  Timothy M. Collins,et al.  Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.

[67]  A. Brower Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Cockburn,et al.  The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. , 1993, Genome.

[69]  D. M. Hamm,et al.  The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects , 1993, Insect molecular biology.

[70]  D. Strickman,et al.  Illustrated key to the female anopheline mosquitoes of Central America and Mexico. , 1990, Journal of the American Mosquito Control Association.

[71]  K. Linthicum A Revision of the Argyritarsis Section of the Subgenus Nyssorhynchus of Anopheles (Diptera: Culicidae) , 1988 .

[72]  R. DeSalle,et al.  Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of Drosophila mercatorum. , 1987, Genetics.

[73]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[74]  I. Boussy Recent Developments in the Genetics of Insect Disease Vectors , 1984 .

[75]  Joselita Maria Mendes dos Santos,et al.  Biologia de Anofelinos amazônicos. V. Polimorfismo cromossômico de Anopheles darlingi Root (Diptera, Culicidae) , 1982 .

[76]  Julio Montoya,et al.  tRNA punctuation model of RNA processing in human mitochondria , 1981, Nature.

[77]  M. Faran,et al.  A handbook of the Amazonian species of Anopheles(Nyssorhynchus) (Diptera: Culicidae) , 1981 .