Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time
暂无分享,去创建一个
A. James | W. Tadei | J. Krzywinski | J. Conn | N. Achee | M. Moreno | Jaroslaw Krzywinski | Anthony A James | Osvaldo Marinotti | Nicole L Achee | Jan E Conn | Marta Moreno | Wanderli P Tadei | Osvaldo Marinotti
[1] Bernard M. E. Moret,et al. Phylogenetic Inference , 2011, Encyclopedia of Parallel Computing.
[2] Matthew A. Bertone,et al. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology , 2009, BMC Evolutionary Biology.
[3] P. Somboon,et al. Molecular phylogenetics and biogeography of the Neocellia Series of Anopheles mosquitoes in the Oriental Region. , 2009, Molecular phylogenetics and evolution.
[4] P. M. Pedro,et al. Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae) , 2009 .
[5] J. Ribeiro,et al. Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae , 2009, PloS one.
[6] A. Diabaté,et al. The molecular forms of Anopheles gambiae: a phenotypic perspective. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
[7] G. Duarte,et al. The Mitochondrial Control Region of Blowflies (Diptera: Calliphoridae): A Hot Spot for Mitochondrial Genome Rearrangements , 2008, Journal of medical entomology.
[8] C. Dye,et al. World Malaria Report, 2008. , 2008 .
[9] Lisa Mirabello,et al. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America , 2008, BMC Ecology.
[10] A. Rambaut,et al. BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.
[11] L. Mirabello,et al. The biogeography and population genetics of neotropical vector species , 2007, Heredity.
[12] Thomas L. Turner,et al. Locus- and population-specific selection and differentiation between incipient species of Anopheles gambiae. , 2007, Molecular biology and evolution.
[13] Maria Anisimova,et al. Phylogenomic analysis of natural selection pressure in Streptococcus genomes , 2007, BMC Evolutionary Biology.
[14] C. Meiklejohn,et al. Positive and negative selection on the mitochondrial genome. , 2007, Trends in genetics : TIG.
[15] R. Wilkerson,et al. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. , 2007, Molecular phylogenetics and evolution.
[16] L. Mirabello. Molecular population genetics of the malaria vector Anopheles darlingi throughout Central and South America using mitochondrial, nuclear, and microsatellite markers , 2007 .
[17] A. M. Azeredo-Espin,et al. The Mitochondrial DNA Control Region of Muscidae Flies: Evolution and Structural Conservation in a Dipteran Context , 2007, Journal of Molecular Evolution.
[18] L. Mirabello,et al. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America , 2006, Heredity.
[19] L. P. Lounibos,et al. Bloodmeal Hosts of Anopheles Species (Diptera: Culicidae) in a Malaria-Endemic Area of the Brazilian Amazon , 2006, Journal of medical entomology.
[20] J. Krzywinski,et al. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. , 2006, Molecular phylogenetics and evolution.
[21] Jonathan P. Bollback,et al. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. , 2006, The American journal of tropical medicine and hygiene.
[22] Nicolas Galtier,et al. Population Size Does Not Influence Mitochondrial Genetic Diversity in Animals , 2006, Science.
[23] S. Ho,et al. Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.
[24] S. Ho,et al. Molecular clocks: when times are a-changin'. , 2006, Trends in genetics : TIG.
[25] K. Tamura,et al. Replication Origin of Mitochondrial DNA in Insects , 2005, Genetics.
[26] R. Nielsen,et al. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.
[27] Johannes Müller,et al. Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.
[28] Matthew W. Hahn,et al. Genomic Islands of Speciation in Anopheles gambiae , 2005, PLoS biology.
[29] J. Boore,et al. Sequencing and comparing whole mitochondrial genomes of animals. , 2005, Methods in enzymology.
[30] W. Wong,et al. Bayes empirical bayes inference of amino acid sites under positive selection. , 2005, Molecular biology and evolution.
[31] A. Beckenbach,et al. Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). , 2005, Genome.
[32] Douglas O. Clary,et al. The mitochondrial DNA molecule ofDrosophila yakuba: Nucleotide sequence, gene organization, and genetic code , 2005, Journal of Molecular Evolution.
[33] C. E. Cook. The complete mitochondrial genome of the stomatopod crustacean Squilla mantis , 2005, BMC Genomics.
[34] P. Arruda,et al. The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). , 2004, Gene.
[35] Sudhir Kumar,et al. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..
[36] Chau-Ti Ting,et al. Genes and speciation , 2001, Nature Reviews Genetics.
[37] N. Perna,et al. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 1995, Journal of Molecular Evolution.
[38] Nicole T. Perna,et al. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 2004, Journal of Molecular Evolution.
[39] Xavier Messeguer,et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods , 2003, Bioinform..
[40] J. Krzywinski,et al. Molecular systematics of Anopheles: from subgenera to subpopulations. , 2003, Annual review of entomology.
[41] John P. Huelsenbeck,et al. MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..
[42] Gregory Kucherov,et al. mreps: efficient and flexible detection of tandem repeats in DNA , 2003, Nucleic Acids Res..
[43] R. Carter. Speculations on the origins of Plasmodium vivax malaria. , 2003, Trends in parasitology.
[44] K. Day,et al. Human migration, mosquitoes and the evolution of Plasmodium falciparum. , 2003, Trends in parasitology.
[45] L. Weigt,et al. Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeat‐containing regions in studies of population genetics and evolutionary history , 2002, Insect molecular biology.
[46] R. Nielsen,et al. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. , 2002, Molecular biology and evolution.
[47] Joseph P Bielawski,et al. Accuracy and power of bayes prediction of amino acid sites under positive selection. , 2002, Molecular biology and evolution.
[48] M. Miles,et al. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. , 2002, Molecular biology and evolution.
[49] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[50] X. Xia,et al. DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.
[51] G. Poinar,et al. Anopheles (Nyssorhynchus) dominicanus sp. n. (Diptera: Culicidae) from Dominican Amber , 2000 .
[52] L. P. Lounibos,et al. Malaria Vector Heterogeneity in South America , 2000 .
[53] F. Ayala,et al. Population structure and recent evolution of Plasmodium falciparum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[54] S Rozen,et al. Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.
[55] C. Gissi,et al. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. , 1999, Gene.
[56] M. T. Marrelli,et al. Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae). , 1999, Journal of medical entomology.
[57] Y. Rubio-Palis,et al. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. , 1999, The American journal of tropical medicine and hygiene.
[58] W. Black,et al. Mosquito genomes: structure, organization, and evolution. , 1999, Advances in genetics.
[59] H. A. Orr,et al. The evolutionary genetics of speciation. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[60] David Posada,et al. MODELTEST: testing the model of DNA substitution , 1998, Bioinform..
[61] Ziheng Yang,et al. PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..
[62] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[63] R. Macphee,et al. Age and Paleogeographical Origin of Dominican Amber , 1996, Science.
[64] J. Charlwood,et al. Biological variation in Anopheles darlingi Root. , 1996, Memorias do Instituto Oswaldo Cruz.
[65] J. Powell,et al. Evolution of the mitochondrial DNA control region in the Anopheles gambiae complex , 1996, Insect molecular biology.
[66] Timothy M. Collins,et al. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.
[67] A. Brower. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[68] A. Cockburn,et al. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. , 1993, Genome.
[69] D. M. Hamm,et al. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects , 1993, Insect molecular biology.
[70] D. Strickman,et al. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. , 1990, Journal of the American Mosquito Control Association.
[71] K. Linthicum. A Revision of the Argyritarsis Section of the Subgenus Nyssorhynchus of Anopheles (Diptera: Culicidae) , 1988 .
[72] R. DeSalle,et al. Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of Drosophila mercatorum. , 1987, Genetics.
[73] M. Nei,et al. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.
[74] I. Boussy. Recent Developments in the Genetics of Insect Disease Vectors , 1984 .
[75] Joselita Maria Mendes dos Santos,et al. Biologia de Anofelinos amazônicos. V. Polimorfismo cromossômico de Anopheles darlingi Root (Diptera, Culicidae) , 1982 .
[76] Julio Montoya,et al. tRNA punctuation model of RNA processing in human mitochondria , 1981, Nature.
[77] M. Faran,et al. A handbook of the Amazonian species of Anopheles(Nyssorhynchus) (Diptera: Culicidae) , 1981 .