Bayesian Estimation of the Parameters of Bivariate Exponential Distributions

In this article, we develop an empirical Bayesian approach for the Bayesian estimation of parameters in four bivariate exponential (BVE) distributions. We have opted for gamma distribution as a prior for the parameters of the model in which the hyper parameters have been estimated based on the method of moments and maximum likelihood estimates (MLEs). A simulation study was conducted to compute empirical Bayesian estimates of the parameters and their standard errors. We use moment estimators or MLEs to estimate the hyper parameters of the prior distributions. Furthermore, we compare the posterior mode of parameters obtained by different prior distributions and the Bayesian estimates based on gamma priors are very close to the true values as compared to improper priors. We use MCMC method to obtain the posterior mean and compared the same using the improper priors and the classical estimates, MLEs.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[3]  J. E. Freund A Bivariate Extension of the Exponential Distribution , 1961 .

[4]  M. May Bayesian Survival Analysis. , 2002 .

[5]  David D. Hanagal,et al.  Large sample tests of independence for absolutely continuous bivariate exponential distribution , 1991 .

[6]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[7]  Edsel A. Peña,et al.  Bayes Estimation for the Marshall-Olkin Exponential Distribution , 1990 .

[8]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[9]  Elisa Lee,et al.  Statistical Methods for Survival Data Analysis: Lee/Survival Data Analysis , 2003 .

[10]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[12]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[13]  H. Block Multivariate Exponential Distribution , 2006 .

[14]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[15]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[16]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[17]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[18]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[19]  Frank Proschan,et al.  Estimating the Parameters of a Bivariate Exponential Distribution in Several Sampling Situations. , 1973 .

[20]  David D. Hanagal,et al.  Large sample tests of λ3 in the bivariate exponential distribution , 1991 .

[21]  David D. Hanagal,et al.  Large sample tests for testing symmetry and independence in some bivariate exponential models , 1992 .

[22]  David D. Hanagal Some Inference Results in Modified Freund's Bivariate Exponential Distribution , 1992 .

[23]  Henry W. Block,et al.  A Continuous, Bivariate Exponential Extension , 1974 .

[24]  N. L. Johnson,et al.  Continuous Multivariate Distributions, Volume 1: Models and Applications , 2019 .