Noninvasive brain stimulation: from physiology to network dynamics and back

Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application.

[1]  L. Bindman,et al.  The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long‐lasting after‐effects , 1964, The Journal of physiology.

[2]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[3]  A. Barker,et al.  NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX , 1985, The Lancet.

[4]  B N Cuffin,et al.  Developing a more focal magnetic stimulator. Part I: Some basic principles. , 1991, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[5]  SM Dudek,et al.  Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  S. V. Lawande,et al.  THE PERTURBATION APPROACH , 1993 .

[7]  M. Hallett,et al.  Modulation of cortical motor output maps during development of implicit and explicit knowledge. , 1994, Science.

[8]  Mohamed E. El-Hawary,et al.  Some Basic Principles , 1995 .

[9]  R. Hanajima,et al.  Magnetic stimulation over the cerebellum in humans , 1995, Annals of neurology.

[10]  J. Rothwell,et al.  Interaction between intracortical inhibition and facilitation in human motor cortex. , 1996, The Journal of physiology.

[11]  B. Lu,et al.  Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus , 1996, Nature.

[12]  M. Hallett,et al.  Functional relevance of cross-modal plasticity in blind humans , 1997, Nature.

[13]  M. Hallett,et al.  Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation , 1997, Neurology.

[14]  L. Cohen,et al.  Induction of plasticity in the human motor cortex by paired associative stimulation. , 2000, Brain : a journal of neurology.

[15]  M. Nitsche,et al.  Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation , 2000, The Journal of physiology.

[16]  Claudio Babiloni,et al.  Prefontal cortex in long-term memory: an “interference” approach using magnetic stimulation , 2001, Nature Neuroscience.

[17]  John C. Rothwell,et al.  Transcranial Magnetic Stimulation Can Be Used to Test Connections to Primary Motor Areas from Frontal and Medial Cortex in Humans , 2001, NeuroImage.

[18]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[19]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[20]  Prefontal cortex in long-term memory: an “interference” approach using magnetic stimulation , 2002, Nature Neuroscience.

[21]  M. Hallett,et al.  Early consolidation in human primary motor cortex , 2002, Nature.

[22]  L. Cohen,et al.  Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation , 2002, The Journal of physiology.

[23]  M. Nitsche,et al.  Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. , 2002, Brain : a journal of neurology.

[24]  M. Nitsche,et al.  Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans , 2003, The Journal of physiology.

[25]  L. Cohen,et al.  A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. , 2003, Journal of neurophysiology.

[26]  L. Cohen,et al.  Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. , 2004, Journal of neurophysiology.

[27]  K. Hoffmann,et al.  Direct Current Stimulation over V5 Enhances Visuomotor Coordination by Improving Motion Perception in Humans , 2004, Journal of Cognitive Neuroscience.

[28]  Sung Ho Jang,et al.  Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans , 2004, Neuroscience Letters.

[29]  M. Nitsche,et al.  GABAergic modulation of DC stimulation‐induced motor cortex excitability shifts in humans , 2004, The European journal of neuroscience.

[30]  Robert Chen,et al.  Exploring the connectivity between the cerebellum and motor cortex in humans , 2004, The Journal of physiology.

[31]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[32]  L. Cohen,et al.  Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. , 2005, Brain : a journal of neurology.

[33]  Tomás Paus,et al.  Inferring causality in brain images: a perturbation approach , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Bai Lu,et al.  Activation of p75NTR by proBDNF facilitates hippocampal long-term depression , 2005, Nature Neuroscience.

[35]  R. Yuste Origin and Classification of Neocortical Interneurons , 2005, Neuron.

[36]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[37]  Sergio P. Rigonatti,et al.  Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory , 2005, Experimental Brain Research.

[38]  Á. Pascual-Leone,et al.  Diminishing Reciprocal Fairness by Disrupting the Right Prefrontal Cortex , 2006, Science.

[39]  Juha Silvanto,et al.  Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. , 2006, Journal of neurophysiology.

[40]  A. Berardelli,et al.  Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects , 2007, Experimental Brain Research.

[41]  Alon Amir,et al.  Three-Dimensional Distribution of the Electric Field Induced in the Brain by Transcranial Magnetic Stimulation Using Figure-8 and Deep H-Coils , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[42]  Jacinta O'Shea,et al.  Functional specificity of human premotor–motor cortical interactions during action selection , 2007, The European journal of neuroscience.

[43]  J. Rothwell,et al.  The after-effect of human theta burst stimulation is NMDA receptor dependent , 2007, Clinical Neurophysiology.

[44]  Carlo Miniussi,et al.  A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS) , 2007, Clinical Neurophysiology.

[45]  M. Nitsche,et al.  Shaping the effects of transcranial direct current stimulation of the human motor cortex. , 2007, Journal of neurophysiology.

[46]  Nadia Bolognini,et al.  Somatic and Motor Components of Action Simulation , 2007, Current Biology.

[47]  D. Liebetanz,et al.  Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex , 2005, Clinical Neurophysiology.

[48]  M. Hallett Transcranial Magnetic Stimulation: A Primer , 2007, Neuron.

[49]  Giacomo Koch,et al.  Focal Stimulation of the Posterior Parietal Cortex Increases the Excitability of the Ipsilateral Motor Cortex , 2007, The Journal of Neuroscience.

[50]  J. Rothwell,et al.  The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex , 2008, The Journal of physiology.

[51]  V. Walsh,et al.  State-dependency in brain stimulation studies of perception and cognition , 2008, Trends in Cognitive Sciences.

[52]  Patrick Ragert,et al.  Improvement of spatial tactile acuity by transcranial direct current stimulation , 2008, Clinical Neurophysiology.

[53]  Giacomo Koch,et al.  A common polymorphism in the brain‐derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS , 2008, The Journal of physiology.

[54]  Marco Davare,et al.  Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans , 2008, The Journal of physiology.

[55]  L. Cohen,et al.  Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation , 2008, Brain Stimulation.

[56]  Patrick Ragert,et al.  Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control , 2008, The Journal of physiology.

[57]  J. Rothwell,et al.  Mapping causal interregional influences with concurrent TMS–fMRI , 2008, Experimental Brain Research.

[58]  Bruce T Volpe,et al.  Transcranial magnetic stimulation, synaptic plasticity and network oscillations , 2009, Journal of NeuroEngineering and Rehabilitation.

[59]  P Girlanda,et al.  Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. , 2009, Cerebral cortex.

[60]  Viviana Versace,et al.  TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex , 2009, The Journal of physiology.

[61]  Uri Eden,et al.  Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences , 2009, Cortex.

[62]  Brian N. Pasley,et al.  State-Dependent Variability of Neuronal Responses to Transcranial Magnetic Stimulation of the Visual Cortex , 2009, Neuron.

[63]  Ethan R. Buch,et al.  Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation , 2009, Proceedings of the National Academy of Sciences.

[64]  G. Fink,et al.  Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. , 2009, Brain : a journal of neurology.

[65]  Etienne Olivier,et al.  Short-Latency Influence of Medial Frontal Cortex on Primary Motor Cortex during Action Selection under Conflict , 2009, The Journal of Neuroscience.

[66]  P. Matthews,et al.  Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation , 2009, The Journal of Neuroscience.

[67]  D. Reato,et al.  Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad , 2009, Brain Stimulation.

[68]  M. Ridding,et al.  Determinants of the induction of cortical plasticity by non‐invasive brain stimulation in healthy subjects , 2010, The Journal of physiology.

[69]  Walter Paulus,et al.  Boosting brain excitability by transcranial high frequency stimulation in the ripple range , 2010, The Journal of physiology.

[70]  Violeta Dimova,et al.  Electrified minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications , 2010, Neuropsychologia.

[71]  Ethan R. Buch,et al.  A Network Centered on Ventral Premotor Cortex Exerts Both Facilitatory and Inhibitory Control over Primary Motor Cortex during Action Reprogramming , 2010, The Journal of Neuroscience.

[72]  L. Cohen,et al.  Modification of Existing Human Motor Memories Is Enabled by Primary Cortical Processing during Memory Reactivation , 2010, Current Biology.

[73]  J. Schwarzbach,et al.  State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. , 2010, Cerebral cortex.

[74]  Walter Paulus,et al.  Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans , 2010, Brain Stimulation.

[75]  M. Nitsche,et al.  Dosage‐dependent non‐linear effect of l‐dopa on human motor cortex plasticity , 2010, The Journal of physiology.

[76]  Heidi M. Schambra,et al.  Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning , 2010, Neuron.

[77]  V. Walsh,et al.  Modulating Neuronal Activity Produces Specific and Long-Lasting Changes in Numerical Competence , 2010, Current Biology.

[78]  Natalie Nelissen,et al.  Noninvasive Associative Plasticity Induction in a Corticocortical Pathway of the Human Brain , 2011, The Journal of Neuroscience.

[79]  M. Nitsche,et al.  Physiological Basis of Transcranial Direct Current Stimulation , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[80]  J. Rothwell,et al.  D2 Receptor Block Abolishes Theta Burst Stimulation-Induced Neuroplasticity in the Human Motor Cortex , 2011, Neuropsychopharmacology.

[81]  Nitzan Censor,et al.  Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory , 2010, The Journal of physiology.

[82]  Gregor Thut,et al.  Rhythmic TMS over Parietal Cortex Links Distinct Brain Frequencies to Global versus Local Visual Processing , 2011, Current Biology.

[83]  M. Nitsche,et al.  Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation , 2011, Human brain mapping.

[84]  C. Miniussi,et al.  Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning , 2011, The Journal of Neuroscience.

[85]  R. VanRullen,et al.  The Phase of Ongoing Oscillations Mediates the Causal Relation between Brain Excitation and Visual Perception , 2011, The Journal of Neuroscience.

[86]  C. Umilta,et al.  The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues , 2011, Neuroscience & Biobehavioral Reviews.

[87]  Robert Chen,et al.  Triple-pulse TMS to study interactions between neural circuits in human cortex , 2011, Brain Stimulation.

[88]  P. Schyns,et al.  Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures , 2011, Current Biology.

[89]  M. Nitsche,et al.  The Importance of Timing in Segregated Theta Phase-Coupling for Cognitive Performance , 2012, Current Biology.

[90]  M. Nitsche,et al.  Effects of Transcranial Electrical Stimulation on Cognition , 2012, Clinical EEG and neuroscience.

[91]  M. Carrasco,et al.  Occipital Transcranial Magnetic Stimulation Has an Activity-Dependent Suppressive Effect , 2012, The Journal of Neuroscience.

[92]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[93]  Sergiu Groppa,et al.  The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico‐cortical route , 2012, Human brain mapping.

[94]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[95]  M. Bikson,et al.  Computational Models of Transcranial Direct Current Stimulation , 2012, Clinical EEG and neuroscience.

[96]  M. Nitsche,et al.  The pharmacology of neuroplasticity induced by non‐invasive brain stimulation: building models for the clinical use of CNS active drugs , 2012, The Journal of physiology.

[97]  Á. Pascual-Leone,et al.  Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging , 2012, The European journal of neuroscience.

[98]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[99]  Catherine Tallon-Baudry,et al.  Causal Frequency-Specific Contributions of Frontal Spatiotemporal Patterns Induced by Non-Invasive Neurostimulation to Human Visual Performance , 2013, The Journal of Neuroscience.

[100]  C. Plewnia,et al.  Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism , 2013, Cortex.

[101]  Gaby S. Pell,et al.  Commentary on: Deng et al., Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs , 2013, Brain Stimulation.

[102]  Cosimo Urgesi,et al.  Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions. , 2013, Cerebral cortex.

[103]  S. Lisanby,et al.  Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs , 2013, Brain Stimulation.

[104]  Sven Bestmann,et al.  Muscle and Timing-specific Functional Connectivity between the Dorsolateral Prefrontal Cortex and the Primary Motor Cortex , 2013, Journal of Cognitive Neuroscience.