Intrinsic magnetic properties of Sm(Fe1-Co )11Ti and Zr-substituted Sm1-yZr (Fe0.8Co0.2)11.5Ti0.5 compounds with ThMn12 structure toward the development of permanent magnets

Abstract Constituent phases in Sm(Fe1-xCox)11Ti alloys with 0 ≤ x ≤ 0.3 and Sm1-yZry(Fe0.8Co0.2)11.5Ti0.5 alloys with 0 ≤ y ≤ 0.3 and the intrinsic magnetic properties of the ThMn12-type phases in these alloys were investigated for discussing the potential as permanent magnet material. The increase of Co substitution for Fe from x = 0.1 to 0.3 for Sm(Fe1-xCox)11Ti increases the saturation magnetization (μ0Ms) of the ThMn12-type compound from 1.35 T to 1.52 T, while the largest magnetic anisotropy field (μ0HA) of 10.9 T was achieved for x = 0.2, μ0Ms and Curie temperature (Tc) which were determined to be 1.43 T and 800 K, respectively. For the Sm1-yZry(Fe0.8Co0.2)11.5Ti0.5 alloy with lower Ti, the phase stability of the ThMn12 structure is attained by substituting Sm with Zr. Increase of Zr in Sm1-yZry(Fe0.8Co0.2)11.5Ti0.5 from y = 0.1 to 0.3 decreases μ0Ms from 1.61 to 1.52 T. However, the largest Tc of 830 K was found for the ThM12-type phase in the (Sm0.8Zr0.2) (Fe0.8Co0.2)11.5Ti0.5 alloy, μ0Ms and μ0HA of which were determined to be 1.53 T and 8.4 T at 300 K, respectively. The ThMn12-type phase in the (Sm0.8Zr0.2) (Fe0.8Co0.2)11.5Ti0.5 alloy has comparable intrinsic hard magnetic properties with those of Nd2Fe14B.

[1]  A. Szytuła,et al.  Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics , 1994 .

[2]  L. Schultz,et al.  Magnetic hardening of Sm‐Fe‐Ti alloys , 1990 .

[3]  Joachim Wecker,et al.  Structural and hard magnetic properties of rapidly solidified Sm-Fe-N , 1991 .

[4]  H. Sepehri-Amin,et al.  Strategy for high-coercivity Nd–Fe–B magnets , 2012 .

[5]  O. Moze,et al.  Neutron diffraction and magnetic anisotropy study of Y-Fe-Ti intermetallic compounds , 1988 .

[6]  Kazuhiro Hono,et al.  Intrinsic hard magnetic properties of Sm(Fe 1−x Co x ) 12 compound with the ThMn 12 structure , 2017 .

[7]  H. Sepehri-Amin,et al.  Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet , 2012 .

[8]  T. Ohkubo,et al.  Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets , 2016 .

[9]  M. Rosenberg,et al.  Magnetic hardening of melt-spun and crystallized Sm-Fe-V and Sm-(Fe, Co)-V alloys , 1990 .

[10]  S. Sugimoto,et al.  Enhancement of Magnetic Properties of Sm(Fe, Co, Ti)12 Melt-Spun Ribbons by Refining Crystallized Grains , 1991 .

[11]  R. Osugi,et al.  Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure , 1988 .

[12]  J. Coey,et al.  Chapter 1 Magnetic properties of ternary rare-earth transition-metal compounds , 1991 .

[13]  H. Kino,et al.  First-Principles Study of Magnetocrystalline Anisotropy and Magnetization in NdFe12, NdFe11Ti, and NdFe11TiN , 2014 .

[14]  T. Nakamichi Ferro- and Antiferromagnetism of the Laves Phase Compound in Fe-Ti Alloy System , 1968 .

[15]  Satoshi Hirosawa,et al.  Perspectives for high-performance permanent magnets: applications, coercivity, and new materials , 2017 .

[16]  M. Solzi,et al.  Magnetic anisotropy and first-order magnetization processes in Sm(Fe1−xCOx)10M2 (M = Ti, Si) compounds , 1990 .

[17]  Satoshi Hirosawa,et al.  Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals , 1986 .

[18]  K. Buschow Permanent magnet materials based on tetragonal rare earth compounds of the type RFe12−xMx , 1991 .

[19]  O. Gutfleisch,et al.  Properties of magnetically semi-hard (FexCo1−x)3B compounds , 2017 .

[20]  H. Sepehri-Amin,et al.  Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process using Nd62Dy20Al18 alloy , 2017 .

[21]  M. Yano,et al.  The stability of newly developed (R,Zr)(Fe,Co)12−xTix alloys for permanent magnets , 2017 .

[22]  J. Murray The Fe−Ti (Iron-Titanium) system , 1981 .

[23]  G. Petzow,et al.  Phase relations in the system Sm-Fe-Ti and the consequences for the production of permanent magnets , 1992 .

[24]  D. Fruchart,et al.  High field magnetization measurements of SmFe11Ti and SmFe11TiH1−δ , 1996 .

[25]  J. Coey,et al.  Intrinsic magnetic properties of the iron-rich ThMn12-structure alloys R(Fe11Ti); R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu , 1989 .

[26]  H. Sepehri-Amin,et al.  Microstructure and magnetic properties of grain boundary modified recycled Nd-Fe-B sintered magnets , 2017 .

[27]  V. Sinha,et al.  Magnetic and structural properties of SmTiFe11−xCox alloys , 1988 .

[28]  D. Fruchart,et al.  Hydrogen effects on the magnetic properties of RFe11Ti compounds , 1998 .

[29]  D. Givord,et al.  Evidence in rare‐earth (R)–transition metal (M) intermetallics for a systematic dependence of R‐M exchange interactions on the nature of the R atom , 1987 .

[30]  M. Sagawa,et al.  Magnetization and magnetic anisotropy of R2Co14B and Nd2(Fe1−x Cox)14B measured on single crystals , 1987 .

[31]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[32]  T. Nakamura,et al.  Magnetic properties of C14 Laves phase Ti(Fe 1 -xT x ) 2 with T=Mn, Co and Ni ( x ? 0.6 ) , 2005 .

[33]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .

[34]  Masao Yano,et al.  (Sm,Zr)(Fe,Co)11.0-11.5Ti1.0-0.5 compounds as new permanent magnet materials , 2016 .

[35]  Chen Nan‐xian,et al.  Phase stability and site preference of Sm(Fe,T) 12 , 2001 .

[36]  T. Schulthess,et al.  Electronic structure, exchange interactions, and Curie temperature of FeCo , 1999 .

[37]  Coehoorn Electronic structure and magnetism of transition-metal-stabilized YFe12-xMx intermetallic compounds. , 1990, Physical review. B, Condensed matter.

[38]  L. Bessais,et al.  Structure and magnetic properties of nanocrystalline Sm(Fe 1-x Co x ) 11 Ti (x<=2) , 2001 .

[39]  H. Kino,et al.  First-principles study on stability and magnetism of NdFe11M and NdFe11MN for M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , 2016, 1609.07227.

[40]  Zhao,et al.  Magnetic phase transitions, magnetocrystalline anisotropy, and crystal-field interactions in the RFe11Ti series (where R=Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Tm). , 1993, Physical review. B, Condensed matter.

[41]  H. Kronmüller,et al.  Determination of intrinsic magnetic material parameters of Nd2Fe14B from magnetic measurements of sintered Nd15Fe77B8 magnets , 1986 .

[42]  H. Sepehri-Amin,et al.  Microstructure and temperature dependent of coercivity of hot-deformed Nd–Fe–B magnets diffusion processed with Pr–Cu alloy , 2015 .

[43]  Liu Wei,et al.  Structural and magnetic properties of mechanically alloyed Smx(Fe1−yCoy)100−x nitrides , 1994 .

[44]  Guangheng Wu,et al.  A study of the magnetocrystalline anisotropy of RFe11-xCoxTi compounds with R = Y and Er , 2001 .