Quantum computation for periodic solids in second quantization

In this work, we present a quantum algorithm for ground-state energy calculations of periodic solids on error-corrected quantum computers. The algorithm is based on the sparse qubitization approach in second quantization and developed for Bloch and Wannier basis sets. We show that Wannier functions require less computational resources with respect to Bloch functions because: (i) the L$_1$ norm of the Hamiltonian is considerably lower and (ii) the translational symmetry of Wannier functions can be exploited in order to reduce the amount of classical data that must be loaded into the quantum computer. The resource requirements of the quantum algorithm are estimated for periodic solids such as NiO and PdO. These transition metal oxides are industrially relevant for their catalytic properties. We find that ground-state energy estimation of Hamiltonians approximated using 200--900 spin orbitals requires {\it ca.}~$10{}^{10}$--$10^{12}$ T gates and up to $3\cdot10^8$ physical qubits for a physical error rate of $0.1\%$.

[1]  N. S. Blunt,et al.  Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications , 2022, Journal of chemical theory and computation.

[2]  T. Cubitt,et al.  Towards near-term quantum simulation of materials , 2022, Nature communications.

[3]  P. Zoller,et al.  Propagation of errors and quantitative quantum simulation with quantum advantage , 2022, Quantum Science and Technology.

[4]  Suguru Endo,et al.  Resource estimations for the Hamiltonian simulation in correlated electron materials , 2022, Physical Review A.

[5]  Joonho Lee,et al.  Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[7]  M. Berta,et al.  A randomized quantum algorithm for statistical phase estimation , 2021, Physical review letters.

[8]  Joonho Lee,et al.  Unbiasing fermionic quantum Monte Carlo with a quantum computer , 2021, Nature.

[9]  Damian S. Steiger,et al.  Prospects of quantum computing for molecular sciences , 2021, Materials Theory.

[10]  Yuya O. Nakagawa,et al.  Variational quantum simulation for periodic materials , 2020, Physical Review Research.

[11]  D. Berry,et al.  Fault-Tolerant Quantum Simulations of Chemistry in First Quantization , 2021, PRX Quantum.

[12]  F. Buda,et al.  Orbital transformations to reduce the 1-norm of the electronic structure Hamiltonian for quantum computing applications , 2021, Physical Review Research.

[13]  Earl T Campbell,et al.  Early fault-tolerant simulations of the Hubbard model , 2020, Quantum Science and Technology.

[14]  Joonho Lee,et al.  Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction , 2020, PRX Quantum.

[15]  Damian S. Steiger,et al.  Quantum computing enhanced computational catalysis , 2020, Physical Review Research.

[16]  J. Perdew,et al.  Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories , 2020, Proceedings of the National Academy of Sciences.

[17]  D. M. Ramo,et al.  Momentum-Space Unitary Couple Cluster and Translational Quantum Subspace Expansion for Periodic Systems on Quantum Computers , 2020, 2008.08694.

[18]  Timothy C. Berkelbach,et al.  Recent developments in the PySCF program package. , 2020, The Journal of chemical physics.

[19]  B. Bauer,et al.  Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. , 2020, Chemical reviews.

[20]  Hartmut Neven,et al.  Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization , 2019, Quantum.

[21]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[22]  Benjamin P Pritchard,et al.  New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community , 2019, J. Chem. Inf. Model..

[23]  Karin M. Rabe,et al.  Systematic beyond-DFT study of binary transition metal oxides , 2019, npj Computational Materials.

[24]  Nathan Wiebe,et al.  Phase estimation with randomized Hamiltonians , 2019, 1907.10070.

[25]  Joschka Roffe,et al.  Quantum error correction: an introductory guide , 2019, Contemporary Physics.

[26]  Ryan Babbush,et al.  Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization , 2019, Quantum.

[27]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[28]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[29]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[30]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[31]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[32]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[33]  Luke Schaeffer,et al.  Trading T-gates for dirty qubits in state preparation and unitary synthesis , 2018, 1812.00954.

[34]  Iliya Sabzevari,et al.  Improved Speed and Scaling in Orbital Space Variational Monte Carlo. , 2018, Journal of chemical theory and computation.

[35]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[36]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[37]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[38]  Damian S. Steiger,et al.  Quantum Algorithm for Spectral Measurement with a Lower Gate Count. , 2017, Physical review letters.

[39]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[40]  Craig Gidney,et al.  Halving the cost of quantum addition , 2017, Quantum.

[41]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[42]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[43]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  J. Perdew,et al.  Synergy of van der Waals and self-interaction corrections in transition metal monoxides , 2017 .

[45]  Qiming Sun,et al.  Gaussian and plane-wave mixed density fitting for periodic systems. , 2017, The Journal of chemical physics.

[46]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  Qiming Sun,et al.  Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids. , 2017, Journal of chemical theory and computation.

[48]  H. Jónsson,et al.  Theory and Applications of Generalized Pipek-Mezey Wannier Functions. , 2016, Journal of chemical theory and computation.

[49]  Nathan Wiebe,et al.  Bounding the costs of quantum simulation of many-body physics in real space , 2016, 1608.05696.

[50]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[51]  Andrew J. Medford,et al.  From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis , 2015 .

[52]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[53]  Heather J Kulik,et al.  Perspective: Treating electron over-delocalization with the DFT+U method. , 2015, The Journal of chemical physics.

[54]  Ryan Babbush,et al.  Exponentially more precise quantum simulation of fermions in the configuration interaction representation , 2015, 1506.01029.

[55]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[56]  Qiming Sun,et al.  Libcint: An efficient general integral library for Gaussian basis functions , 2014, J. Comput. Chem..

[57]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[58]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[59]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[60]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[61]  H. Jónsson,et al.  Pipek-Mezey Orbital Localization Using Various Partial Charge Estimates. , 2014, Journal of chemical theory and computation.

[62]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[63]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[64]  Peter J. Love,et al.  Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix , 2013, 1312.2579.

[65]  Á. Gali,et al.  Limitations of the hybrid functional approach to electronic structure of transition metal oxides , 2013, 1306.4948.

[66]  R. Leeuwen,et al.  Nonequilibrium Many-Body Theory of Quantum Systems , 2013 .

[67]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[68]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[69]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[70]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[71]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[72]  W. Marsden I and J , 2012 .

[73]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[74]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  Isaiah Shavitt,et al.  Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory , 2009 .

[76]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[77]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[78]  P. Hu,et al.  Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis , 2008 .

[79]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[80]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[81]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[82]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[83]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[84]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[85]  P. Raybaud,et al.  Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors , 2003 .

[86]  Arash A. Mostofi,et al.  Total-energy calculations on a real space grid with localized functions and a plane-wave basis , 2002 .

[87]  Arash A. Mostofi,et al.  Nonorthogonal generalized Wannier function pseudopotential plane-wave method , 2002 .

[88]  D. Cremer Density functional theory: coverage of dynamic and non-dynamic electron correlation effects , 2001 .

[89]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[90]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[91]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[92]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[93]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[94]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[95]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[96]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[97]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[98]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[99]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[100]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[101]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[102]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[103]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[104]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[105]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[106]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[107]  F. Weinhold,et al.  Natural population analysis , 1985 .

[108]  R. Feynman Simulating physics with computers , 1999 .

[109]  K. Fujino,et al.  X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms , 1979 .

[110]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[111]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[112]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[113]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[114]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[115]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[116]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[117]  T. Gibb,et al.  A SURVEY REPORT ON LITHIUM HYDRIDE , 1954 .

[118]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[119]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .