A Metaheuristic Framework for Bi-level Programming Problems with Multi-disciplinary Applications

Bi-level programming problems arise in situations when the decision maker has to take into account the responses of the users to his decisions. Several problems arising in engineering and economics can be cast within the bi-level programming framework. The bi-level programming model is also known as a Stackleberg or leader-follower game in which the leader chooses his variables so as to optimise his objective function, taking into account the response of the follower(s) who separately optimise their own objectives, treating the leader’s decisions as exogenous. In this chapter, we present a unified framework fully consistent with the Stackleberg paradigm of bi-level programming that allows for the integration of meta-heuristic algorithms with traditional gradient based optimisation algorithms for the solution of bi-level programming problems. In particular we employ Differential Evolution as the main meta-heuristic in our proposal.We subsequently apply the proposed method (DEBLP) to a range of problems from many fields such as transportation systems management, parameter estimation and game theory. It is demonstrated that DEBLP is a robust and powerful search heuristic for this class of problems characterised by non smoothness and non convexity.

[1]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[3]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[4]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[5]  J. Wardrop ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. , 1952 .

[6]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[7]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[8]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[9]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[10]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[11]  S. Karamardian Generalized complementarity problem , 1970 .

[12]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[13]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[14]  R E Allsop SOME POSSIBILITIES FOR USING TRAFFIC CONTROL TO INFLUENCE TRIP DISTRIBUTION AND ROUTE CHOICE , 1974 .

[15]  Jerome Bracken,et al.  Defense Applications of Mathematical Programs with Optimization Problems in the Constraints , 1974, Oper. Res..

[16]  W. Norton R. Candler,et al.  Multi-level programming , 1977 .

[17]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[18]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[19]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[20]  Vladimír Rod,et al.  Iterative estimation of model parameters when measurements of all variables are subject to error , 1980 .

[21]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[22]  Hanif D. Sherali,et al.  A mathematical programming approach for determining oligopolistic market equilibrium , 1982, Math. Program..

[23]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[24]  Jonathan F. Bard,et al.  An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem , 1983, Oper. Res..

[25]  C. Fisk GAME THEORY AND TRANSPORTATION SYSTEMS MODELLING , 1984 .

[26]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[27]  Patrick T. Harker,et al.  A variational inequality approach for the determination of oligopolistic market equilibrium , 1984, Math. Program..

[28]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[29]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[30]  Patrick T. Harker,et al.  Properties of the iterative optimization-equilibrium algorithm , 1985 .

[31]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[32]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[33]  Jonathan F. BARD,et al.  Convex two-level optimization , 1988, Math. Program..

[34]  Thomas F. Edgar,et al.  Robust error‐in‐variables estimation using nonlinear programming techniques , 1990 .

[35]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[36]  Ue-Pyng Wen,et al.  Linear Bi-level Programming Problems — A Review , 1991 .

[37]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[38]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[39]  Terry L. Friesz,et al.  A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints , 1992, Transp. Sci..

[40]  Lorenz T. Biegler,et al.  Reduced successive quadratic programming strategy for errors-in-variables estimation , 1992 .

[41]  Ramon E. Moore,et al.  Rigorous methods for global optimization , 1992 .

[42]  M. Florian,et al.  THE NONLINEAR BILEVEL PROGRAMMING PROBLEM: FORMULATIONS, REGULARITY AND OPTIMALITY CONDITIONS , 1993 .

[43]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[44]  T. Friesz,et al.  The multiobjective equilibrium network design problem revisited: A simulated annealing approach , 1993 .

[45]  Alice E. Smith,et al.  Genetic Optimization Using A Penalty Function , 1993, ICGA.

[46]  Omar Ben-Ayed,et al.  Bilevel linear programming , 1993, Comput. Oper. Res..

[47]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[48]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[49]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[50]  William H. K. Lam,et al.  Optimal road tolls under conditions of queueing and congestion , 1996 .

[51]  Ariel Orda,et al.  Avoiding the Braess paradox in non-cooperative networks , 1999, Journal of Applied Probability.

[52]  Alain Haurie,et al.  Optimal charges on river effluent from lumped and distributed sources , 1997 .

[53]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[54]  Baoding Liu,et al.  Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms , 1998 .

[55]  A. Ciric,et al.  A dual temperature simulated annealing approach for solving bilevel programming problems , 1998 .

[56]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[57]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[58]  William R. Esposito,et al.  Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach , 1998 .

[59]  Ben Paechter,et al.  THE CONTINUOUS EQUILIBRIUM OPTIMAL NETWORK DESIGN PROBLEM: A GENETIC APPROACH , 1998 .

[60]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[61]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[62]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[63]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[64]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[65]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[66]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[67]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[68]  Jonathan F. Bard,et al.  A bilevel programming approach to determining tax credits for biofuel production , 2000, Eur. J. Oper. Res..

[69]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[70]  Hai Yang,et al.  An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem , 2001 .

[71]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[72]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[73]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[74]  M. Stadtherr,et al.  Deterministic global optimization for error-in-variables parameter estimation , 2002 .

[75]  Alexander Galetovic,et al.  A New Approach to Private Roads , 2003 .

[76]  J. Lampinen A constraint handling approach for the differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[77]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[78]  Yafeng Yin,et al.  Multiobjective bilevel optimization for transportation planning and management problems , 2002 .

[79]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[80]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[81]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[82]  Kapil Gupta,et al.  A Tabu Search Based Approach for Solving a Class of Bilevel Programming Problems in Chemical Engineering , 2003, J. Heuristics.

[83]  Qiji J. Zhu,et al.  Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..

[84]  Jirí V. Outrata,et al.  A note on a class of equilibrium problems with equilibrium constraints , 2004, Kybernetika.

[85]  Marco Dorigo Ant colony optimization , 2004, Scholarpedia.

[86]  Donald W. Hearn,et al.  An MPEC approach to second-best toll pricing , 2004, Math. Program..

[87]  Ming Yuchi,et al.  Grouping-based evolutionary algorithm: seeking balance between feasible and infeasible individuals of constrained optimization problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[88]  Agachai Sumalee,et al.  Optimal road pricing scheme design , 2004 .

[89]  Boris S. Mordukhovich,et al.  Optimization and equilibrium problems with equilibrium constraints , 2005 .

[90]  Yuping Wang,et al.  An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[91]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[92]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[93]  Stefano Leonardi,et al.  Game-Theoretic Analysis of Internet Switching with Selfish Users , 2005, WINE.

[94]  Suh-Wen Chiou,et al.  Bilevel programming for the continuous transport network design problem , 2005 .

[95]  H. Poorzahedy,et al.  Application of Ant System to network design problem , 2005 .

[96]  Che-Lin Su,et al.  Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms, and Applications in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy the Systems Optimization Laboratory Has Been a Great Working Environment. I Appreciate the Friendship of Kien , 2005 .

[97]  Sven Leyffer The penalty interior-point method fails to converge , 2005, Optim. Methods Softw..

[98]  Ozgur Yeniay Penalty Function Methods for Constrained Optimization with Genetic Algorithms , 2005 .

[99]  James Webb Game Theory: Decisions, Interaction and Evolution , 2006 .

[100]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[101]  Zhigang Zhao,et al.  Particle Swarm Optimization Based Algorithm for Bilevel Programming Problems , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[102]  Andries Petrus Engelbrecht,et al.  Binary Differential Evolution , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[103]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[104]  Daniel Ralph,et al.  Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices , 2007, Oper. Res..

[105]  J. Outrata,et al.  Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets , 2007 .

[106]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[107]  Andrew Koh Solving transportation bi-level programs with Differential Evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[108]  Andries Petrus Engelbrecht,et al.  Binary differential evolution strategies , 2007, 2007 IEEE Congress on Evolutionary Computation.

[109]  G. B. Allende ON THE CALCULATION OF NASH EQUILIBRIUM POINTS WITH THE AID OF THE SMOOTHING APPROACH , 2008 .

[110]  Mehmet Fatih Tasgetiren,et al.  A discrete differential evolution algorithm for the permutation flowshop scheduling problem , 2008, Comput. Ind. Eng..

[111]  Michal Červinka,et al.  Hierarchical Structures in Equilibrium Problems , 2008 .

[112]  Didier Aussel,et al.  Generalized Nash equilibrium problem, variational inequality and quasiconvexity , 2008, Oper. Res. Lett..

[113]  Agachai Sumalee,et al.  Road user charging design: dealing with multi-objectives and constraints , 2009 .

[114]  C. Kanzow,et al.  Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search , 2009 .

[115]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[116]  Patrice Marcotte,et al.  Bilevel Programming: Applications , 2009, Encyclopedia of Optimization.

[117]  Hai Yang,et al.  Private Road Competition and Equilibrium with Traffic Equilibrium Constraints , 2009 .

[118]  Sven Leyffer,et al.  Solving multi-leader–common-follower games , 2010, Optim. Methods Softw..

[119]  Andrew Koh,et al.  traffic assignment modelling , 2010 .

[120]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[121]  Kalyanmoy Deb,et al.  An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm , 2010, Evolutionary Computation.

[122]  Lianju Sun,et al.  Equivalent Bilevel Programming Form for the Generalized Nash Equilibrium Problem , 2010 .

[123]  Xiao-Ping Zhang Overview of Electricity Market Equilibrium Problems and Market Power Analysis , 2010 .

[124]  Andrew Koh,et al.  An evolutionary algorithm based on Nash Dominance for Equilibrium Problems with Equilibrium Constraints , 2012, Appl. Soft Comput..