Small solutions to nonlinear Schrödinger equations

Abstract It is shown that the initial value problem for the nonlinear Schrodinger equations ∂ t u = i Δ u + P ( u , ∇ x u , u ¯ , ∇ x u ¯ ) , t ∈ ℝ , x ∈ ℝ n , where Ρ (.) is a polynomial having no constant or linear terms, is locally well posed for a class of “small” data u 0 . The main ingredients in the proof are new estimates describing the smoothing effect of Kato type for the group { e i t Δ } − ∞ ∞ . This method extends to systems and other dispersive models.

[1]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[2]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .

[3]  J. Ginibre,et al.  Uniqueness of solutions for the generalized Korteweg-de Vries equation , 1989 .

[4]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[5]  J. Ginibre,et al.  Scattering theory in the energy space for a class of nonlinear Schrödinger equations , 1985 .

[6]  Ronald R. Coifman,et al.  Au delà des opérateurs pseudo-différentiels , 1978 .

[7]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[8]  S. Saitoh,et al.  Analyticity and global existence of small solutions to some nonlinear Schrödinger equations , 1990 .

[9]  A. Carbery Radial Fourier Multipliers and Associated Maximal Functions , 1985 .

[10]  C. Kenig,et al.  A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation , 1983 .

[11]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[12]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[13]  N. Hayashi,et al.  On solutions of the initial value problem for the nonlinear Schrödinger equations , 1987 .

[14]  Jalal Shatah,et al.  Global existence of small solutions to nonlinear evolution equations , 1982 .

[15]  J. Simon,et al.  Wave operators and analytic solutions for systems of non-linear Klein-Gordon equations and of non-linear Schrödinger equations , 1985 .

[16]  N. Hayashi Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and the Szegö spaces on a sector , 1991 .

[17]  P. Sjölin,et al.  Regularity of solutions to the Schrödinger equation , 1987 .

[18]  Peter Constantin,et al.  Local smoothing properties of dispersive equations , 1988 .

[19]  N. Hayashi,et al.  On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension , 1986 .

[20]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[21]  Gustavo Ponce,et al.  Global, small amplitude solutions to nonlinear evolution equations , 1983 .

[22]  Y. Tsutsumi Global strong solutions for nonlinear Schro¨dinger equations , 1987 .

[23]  J. Christensen Doctoral thesis , 1970 .

[24]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[25]  N. Hayashi Global existence of small analytic solutions to nonlinear Schrödinger equations , 1990 .

[26]  Jean-Michel Ghidaglia,et al.  On the initial value problem for the Davey-Stewartson systems , 1990 .

[27]  Luis Vega,et al.  On the generalized Benjamin-Ono equation , 1994 .

[28]  T. Cazenave,et al.  Some remarks on the nonlinear Schrödinger equation in the subcritical case , 1989 .

[29]  Y. Tsutsumi L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .

[30]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[31]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[32]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[33]  Norman Morrison,et al.  Introduction to Fourier Analysis , 1994, An Invitation to Modern Number Theory.

[34]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .