Megahertz data collection from protein microcrystals at an X-ray free-electron laser
暂无分享,去创建一个
Steffen Hauf | Hans Fangohr | Marco Ramilli | Marc Messerschmidt | Lars Fröhlich | Alexander Kaukher | Jolanta Sztuk-Dambietz | Thomas Michelat | Matthias Scholz | Thomas Kluyver | Sandor Brockhauser | Wajid Ehsan | Sergey Esenov | Alessandro Silenzi | Lutz Foucar | Elisabeth Hartmann | Ilme Schlichting | Janusz Szuba | Robert L Shoeman | Marco Cammarata | Gianpietro Previtali | Krzysztof Wrona | Adrian P Mancuso | Johan Bielecki | Romain Letrun | Grant Mills | Britta Weinhausen | Natascha Raab | Djelloul Boukhelef | Michel Sliwa | Katerina Dörner | Jacques-Philippe Colletier | Max Lederer | Luis Maia | Alexander Gorel | Richard Bean | Mario Hilpert | Marco Kloos | Gabriela Nass Kovacs | Christopher M Roome | Tokushi Sato | Nasser Al-Qudami | Moritz Emons | Maurizio Manetti | Astrid Münnich | Florent Pallas | Sandhya Venkatesan | Thomas R M Barends | Claudiu A Stan | Yoonhee Kim | A. Mancuso | M. Messerschmidt | R. Shoeman | L. Foucar | I. Schlichting | R. Doak | J. Bielecki | M. Scholz | A. Kaukher | M. Sliwa | S. Esenov | L. Maia | S. Brockhauser | T. Michelat | W. Ehsan | H. Fangohr | S. Hauf | D. Boukhelef | N. Raab | J. Szuba | K. Wrona | E. Hartmann | T. Barends | K. Dörner | L. Fröhlich | M. Hilpert | C. Roome | M. Cammarata | J. Colletier | M. Weik | M. Lederer | R. Bean | Tokushi Sato | T. Kluyver | A. Silenzi | J. Sztuk-Dambietz | C. Stan | Jun Zhu | M. Ramilli | M. Kloos | R Bruce Doak | Martin Weik | Marie Luise Grünbein | Guido Palmer | A. Gorel | G. Nass Kovács | M. Grünbein | M. Stricker | F. Pallas | M. Emons | G. Palmer | Miriam Stricker | Jun Zhu | C. M. Roome | Yoonhee Kim | Grant Mills | B. Weinhausen | R. Letrun | N. Al-Qudami | M. Manetti | Gianpietro Previtali | A. Münnich | S. Venkatesan | G. Mills
[1] Georg Weidenspointner,et al. Femtosecond X-ray protein nanocrystallography , 2011, Nature.
[2] Garth J. Williams,et al. Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.
[3] Klaus Giewekemeyer,et al. Technical Design Report: Scientific Instrument Single Particles, Clusters, and Biomolecules (SPB) , 2013 .
[4] Randy J. Read,et al. Phaser crystallographic software , 2007, Journal of applied crystallography.
[5] R. Shoeman,et al. Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability , 2017, Nature Communications.
[6] B. Rupp,et al. Atomic resolution structure of concanavalin A at 120 K. , 1996, Acta crystallographica. Section D, Biological crystallography.
[7] Anton Barty,et al. CASS - CFEL-ASG software suite , 2012, Comput. Phys. Commun..
[8] Collaborative Computational,et al. The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.
[9] Daniel Beisel,et al. An anti-settling sample delivery instrument for serial femtosecond crystallography , 2012 .
[10] Anton Barty,et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.
[11] Garth J. Williams,et al. Liquid explosions induced by X-ray laser pulses , 2015, Nature Physics.
[12] Randy J. Read,et al. Acta Crystallographica Section D Biological , 2003 .
[13] Steffen Hauf,et al. Data Analysis Support in Karabo at European XFEL , 2018 .
[14] A. J. Kalb,et al. The interaction of concanavalin A with methyl α-D-glucopyranoside , 1968 .
[15] Sébastien Boutet,et al. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam , 2014, Proceedings of the National Academy of Sciences.
[16] Andrew V. Martin,et al. Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Elspeth F Garman,et al. Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. , 2007, Structure.
[18] A. Savitzky,et al. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .
[19] Robert L Shoeman,et al. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. , 2018, Optics express.
[20] Kevin Cowtan,et al. research papers Acta Crystallographica Section D Biological , 2005 .
[21] Anton Barty,et al. CrystFEL: a software suite for snapshot serial crystallography , 2012 .
[22] J. Sumner. THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .
[23] Massimo Altarelli,et al. The European X-ray Free-Electron Laser: toward an ultra-bright, high repetition-rate x-ray source , 2015, High Power Laser Science and Engineering.
[24] Kay Diederichs,et al. Breaking the indexing ambiguity in serial crystallography. , 2014, Acta crystallographica. Section D, Biological crystallography.
[25] Roberto Dinapoli,et al. The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL , 2011 .
[26] Sébastien Boutet,et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.
[27] J. Paul Robinson,et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. , 2018, Nature chemistry.
[28] Garth J. Williams,et al. Mosquito larvicide BinAB revealed by de novo phasing with an X-ray laser , 2016, Nature.
[29] Anton Barty,et al. Recent developments in CrystFEL , 2016, Journal of applied crystallography.
[30] T Jezynski,et al. Versatile optical laser system for experiments at the European X-ray free-electron laser facility. , 2016, Optics express.
[31] Aaron S. Brewster,et al. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams , 2015, Acta crystallographica. Section D, Biological crystallography.
[32] Sébastien Boutet,et al. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature , 2013, Science.
[33] Kunio Hirata,et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.
[34] Jonathan P. Wright,et al. The fast azimuthal integration Python library: pyFAI , 2015, Journal of applied crystallography.
[35] L. Maia,et al. Detectors and Calibration Concept for the European XFEL , 2014 .
[36] Hojjat Adeli,et al. The First Five Years , 1998, Integr. Comput. Aided Eng..
[37] P. Karplus,et al. Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes. , 1992, Journal of molecular biology.
[38] The effect of metal ion homogeneity on the diffraction limit of orthorhombic (I222) crystals of concanavalin A , 1988 .
[39] D. Stuart,et al. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data , 2015, Nature Communications.
[40] M. Hennig,et al. Crystal structure of concanavalin B at 1.65 A resolution. An "inactivated" chitinase from seeds of Canavalia ensiformis. , 1995, Journal of molecular biology.
[41] Sébastien Boutet,et al. Linac Coherent Light Source: The first five years , 2016 .
[42] U Weierstall,et al. Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.
[43] A. Rich,et al. Crystallographic studies on concanavalin B. , 1974, Biochemical and biophysical research communications.
[44] Massimo Altarelli,et al. The European X-ray free-electron laser facility in Hamburg , 2011 .
[45] Garth J. Williams,et al. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.
[46] J. Edsall. 50 years ago James Sumner and the crystallization of urease , 1976 .
[47] P. Andrew Karplus,et al. Linking Crystallographic Model and Data Quality , 2012, Science.
[48] Erik Knudsen,et al. FabIO: easy access to two-dimensional X-ray detector images in Python , 2013 .
[49] Harald Sinn,et al. Photon Beam Transport and Scientific Instruments at the European XFEL , 2017 .