Megahertz data collection from protein microcrystals at an X-ray free-electron laser

X-ray free-electron lasers (XFELs) enable novel experiments because of their high peak brilliance and femtosecond pulse duration. However, non-superconducting XFELs offer repetition rates of only 10–120 Hz, placing significant demands on beam time and sample consumption. We describe serial femtosecond crystallography experiments performed at the European XFEL, the first MHz repetition rate XFEL, delivering 1.128 MHz X-ray pulse trains at 10 Hz. Given the short spacing between pulses, damage caused by shock waves launched by one XFEL pulse on sample probed by subsequent pulses is a concern. To investigate this issue, we collected data from lysozyme microcrystals, exposed to a ~15 μm XFEL beam. Under these conditions, data quality is independent of whether the first or subsequent pulses of the train were used for data collection. We also analyzed a mixture of microcrystals of jack bean proteins, from which the structure of native, magnesium-containing concanavalin A was determined.The European X-ray free-electron laser (EuXFEL) in Hamburg is the first megahertz (MHz) repetition rate XFEL. Here the authors use lysozyme crystals and microcrystals from jack bean proteins and demonstrate that damage-free high quality data can be collected at a MHz repetition rate.

Steffen Hauf | Hans Fangohr | Marco Ramilli | Marc Messerschmidt | Lars Fröhlich | Alexander Kaukher | Jolanta Sztuk-Dambietz | Thomas Michelat | Matthias Scholz | Thomas Kluyver | Sandor Brockhauser | Wajid Ehsan | Sergey Esenov | Alessandro Silenzi | Lutz Foucar | Elisabeth Hartmann | Ilme Schlichting | Janusz Szuba | Robert L Shoeman | Marco Cammarata | Gianpietro Previtali | Krzysztof Wrona | Adrian P Mancuso | Johan Bielecki | Romain Letrun | Grant Mills | Britta Weinhausen | Natascha Raab | Djelloul Boukhelef | Michel Sliwa | Katerina Dörner | Jacques-Philippe Colletier | Max Lederer | Luis Maia | Alexander Gorel | Richard Bean | Mario Hilpert | Marco Kloos | Gabriela Nass Kovacs | Christopher M Roome | Tokushi Sato | Nasser Al-Qudami | Moritz Emons | Maurizio Manetti | Astrid Münnich | Florent Pallas | Sandhya Venkatesan | Thomas R M Barends | Claudiu A Stan | Yoonhee Kim | A. Mancuso | M. Messerschmidt | R. Shoeman | L. Foucar | I. Schlichting | R. Doak | J. Bielecki | M. Scholz | A. Kaukher | M. Sliwa | S. Esenov | L. Maia | S. Brockhauser | T. Michelat | W. Ehsan | H. Fangohr | S. Hauf | D. Boukhelef | N. Raab | J. Szuba | K. Wrona | E. Hartmann | T. Barends | K. Dörner | L. Fröhlich | M. Hilpert | C. Roome | M. Cammarata | J. Colletier | M. Weik | M. Lederer | R. Bean | Tokushi Sato | T. Kluyver | A. Silenzi | J. Sztuk-Dambietz | C. Stan | Jun Zhu | M. Ramilli | M. Kloos | R Bruce Doak | Martin Weik | Marie Luise Grünbein | Guido Palmer | A. Gorel | G. Nass Kovács | M. Grünbein | M. Stricker | F. Pallas | M. Emons | G. Palmer | Miriam Stricker | Jun Zhu | C. M. Roome | Yoonhee Kim | Grant Mills | B. Weinhausen | R. Letrun | N. Al-Qudami | M. Manetti | Gianpietro Previtali | A. Münnich | S. Venkatesan | G. Mills

[1]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[2]  Garth J. Williams,et al.  Single mimivirus particles intercepted and imaged with an X-ray laser , 2011, Nature.

[3]  Klaus Giewekemeyer,et al.  Technical Design Report: Scientific Instrument Single Particles, Clusters, and Biomolecules (SPB) , 2013 .

[4]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[5]  R. Shoeman,et al.  Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability , 2017, Nature Communications.

[6]  B. Rupp,et al.  Atomic resolution structure of concanavalin A at 120 K. , 1996, Acta crystallographica. Section D, Biological crystallography.

[7]  Anton Barty,et al.  CASS - CFEL-ASG software suite , 2012, Comput. Phys. Commun..

[8]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[9]  Daniel Beisel,et al.  An anti-settling sample delivery instrument for serial femtosecond crystallography , 2012 .

[10]  Anton Barty,et al.  Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.

[11]  Garth J. Williams,et al.  Liquid explosions induced by X-ray laser pulses , 2015, Nature Physics.

[12]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[13]  Steffen Hauf,et al.  Data Analysis Support in Karabo at European XFEL , 2018 .

[14]  A. J. Kalb,et al.  The interaction of concanavalin A with methyl α-D-glucopyranoside , 1968 .

[15]  Sébastien Boutet,et al.  Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam , 2014, Proceedings of the National Academy of Sciences.

[16]  Andrew V. Martin,et al.  Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Elspeth F Garman,et al.  Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. , 2007, Structure.

[18]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[19]  Robert L Shoeman,et al.  Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. , 2018, Optics express.

[20]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[21]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[22]  J. Sumner THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .

[23]  Massimo Altarelli,et al.  The European X-ray Free-Electron Laser: toward an ultra-bright, high repetition-rate x-ray source , 2015, High Power Laser Science and Engineering.

[24]  Kay Diederichs,et al.  Breaking the indexing ambiguity in serial crystallography. , 2014, Acta crystallographica. Section D, Biological crystallography.

[25]  Roberto Dinapoli,et al.  The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL , 2011 .

[26]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[27]  J. Paul Robinson,et al.  Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. , 2018, Nature chemistry.

[28]  Garth J. Williams,et al.  Mosquito larvicide BinAB revealed by de novo phasing with an X-ray laser , 2016, Nature.

[29]  Anton Barty,et al.  Recent developments in CrystFEL , 2016, Journal of applied crystallography.

[30]  T Jezynski,et al.  Versatile optical laser system for experiments at the European X-ray free-electron laser facility. , 2016, Optics express.

[31]  Aaron S. Brewster,et al.  Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams , 2015, Acta crystallographica. Section D, Biological crystallography.

[32]  Sébastien Boutet,et al.  Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature , 2013, Science.

[33]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[34]  Jonathan P. Wright,et al.  The fast azimuthal integration Python library: pyFAI , 2015, Journal of applied crystallography.

[35]  L. Maia,et al.  Detectors and Calibration Concept for the European XFEL , 2014 .

[36]  Hojjat Adeli,et al.  The First Five Years , 1998, Integr. Comput. Aided Eng..

[37]  P. Karplus,et al.  Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes. , 1992, Journal of molecular biology.

[38]  The effect of metal ion homogeneity on the diffraction limit of orthorhombic (I222) crystals of concanavalin A , 1988 .

[39]  D. Stuart,et al.  Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data , 2015, Nature Communications.

[40]  M. Hennig,et al.  Crystal structure of concanavalin B at 1.65 A resolution. An "inactivated" chitinase from seeds of Canavalia ensiformis. , 1995, Journal of molecular biology.

[41]  Sébastien Boutet,et al.  Linac Coherent Light Source: The first five years , 2016 .

[42]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.

[43]  A. Rich,et al.  Crystallographic studies on concanavalin B. , 1974, Biochemical and biophysical research communications.

[44]  Massimo Altarelli,et al.  The European X-ray free-electron laser facility in Hamburg , 2011 .

[45]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[46]  J. Edsall 50 years ago James Sumner and the crystallization of urease , 1976 .

[47]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[48]  Erik Knudsen,et al.  FabIO: easy access to two-dimensional X-ray detector images in Python , 2013 .

[49]  Harald Sinn,et al.  Photon Beam Transport and Scientific Instruments at the European XFEL , 2017 .