Improving the performance of the partitioned QN-ILS procedure for fluid-structure interaction problems

Performance of QN-ILS can be improved with data from previous time steps.When this is done, filtering might be necessary.Filtering is a compromise, as discarding data might impair the convergence speed.We introduce two new ways of filtering. Better results are obtained. The Quasi-Newton Inverse Least Squares method has become a popular method to solve partitioned interaction problems. Its performance can be enhanced by using information from previous time-steps if care is taken of the possible ill-conditioning that results. To enhance the stability, filtering has been used. In this paper we show that a relatively minor modification to the filtering technique can substantially reduce the required number of iterations.

[1]  Joris Degroote,et al.  Bubble simulations with an interface tracking technique based on a partitioned fluid-structure interaction algorithm , 2010, J. Comput. Appl. Math..

[2]  Klaus-Jürgen Bathe,et al.  Benchmark problems for incompressible fluid flows with structural interactions , 2007 .

[3]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[4]  Christos Housiadas,et al.  A time-dependent numerical analysis of flow in a mechanical heart valve: Comparison with experimental results , 2010 .

[5]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[6]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[7]  M. Heil Stokes flow in an elastic tube—a large-displacement fluid-structure interaction problem , 1998 .

[8]  Joris Degroote,et al.  The Quasi-Newton Least Squares Method: A New and Fast Secant Method Analyzed for Linear Systems , 2009, SIAM J. Numer. Anal..

[9]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[10]  Jeffrey W. Banks,et al.  An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids , 2014, J. Comput. Phys..

[11]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[12]  John W. Leonard,et al.  NONLINEAR RESPONSE OF MEMBRANES TO OCEAN WAVES USING BOUNDARY AND FINITE ELEMENTS , 1995 .

[13]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[14]  R. Kamm,et al.  A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. , 1999, Journal of biomechanical engineering.

[15]  BENJAMIN UEKERMANN,et al.  A parallel, black-box coupling algorithm for fluid-structure interaction , 2013 .

[16]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[17]  van Eh Harald Brummelen,et al.  Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction , 2006 .

[18]  Hester Bijl,et al.  Acceleration of Strongly Coupled Fluid-Structure Interaction with Manifold Mapping , 2014 .

[19]  J. Vierendeels,et al.  Performance of partitioned procedures in fluid-structure interaction , 2010 .

[20]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[21]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[22]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[23]  Rob Haelterman,et al.  On the non-singularity of the quasi-Newton-least squares method , 2014, J. Comput. Appl. Math..

[24]  Jan Vierendeels,et al.  Stability of a coupling technique for partitioned solvers in FSI applications , 2008 .

[25]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[26]  Scott A. Morton,et al.  Fully implicit aeroelasticity on overset grid systems , 1998 .

[27]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[28]  Nitin Kolekar,et al.  Numerical Modeling and Optimization of Hydrokinetic Turbine , 2011 .

[29]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[30]  Joris Degroote,et al.  Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem , 2013 .

[31]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[32]  Jan Vierendeels,et al.  An interface quasi-Newton algorithm for partitioned simulation of fluid-structure interaction , 2009 .

[33]  Charbel Farhat,et al.  CFD‐Based Nonlinear Computational Aeroelasticity , 2004 .

[34]  Hans-Joachim Bungartz,et al.  A plug-and-play coupling approach for parallel multi-field simulations , 2015 .

[35]  Jan Vierendeels,et al.  Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. , 2007, Journal of biomechanical engineering.

[36]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[37]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[38]  Alexander Düster,et al.  Acceleration of partitioned coupling schemes for problems of thermoelasticity , 2012 .

[39]  Rob Haelterman,et al.  Equivalence of QN-LS and BQN-LS for affine problems , 2015, J. Comput. Appl. Math..

[40]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[41]  Jean-Frédéric Gerbeau,et al.  Partitioned FSI strategy for simulations of a thin elastic valve , 2006 .

[42]  K. Bathe,et al.  A mesh adaptivity procedure for CFD and fluid-structure interactions , 2009 .

[43]  T. Hughes,et al.  Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms , 1999 .

[44]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[45]  Alexander Düster,et al.  Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains , 2012, Comput. Math. Appl..

[46]  Hermann G. Matthies,et al.  Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples , 2011 .

[47]  Nitin Kolekar,et al.  A coupled hydro-structural design optimization for hydrokinetic turbines , 2013 .

[48]  Roland Wüchner,et al.  A framework for stabilized partitioned analysis of thin membrane–wind interaction , 2007 .

[49]  Homer F. Walker,et al.  An accelerated Picard method for nonlinear systems related to variably saturated flow , 2012 .

[50]  D. Van Eester,et al.  Accelerating the convergence of a tokamak modeling code with Aitken's method , 2015, Comput. Phys. Commun..

[51]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[52]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[53]  Schalk Kok,et al.  Quasi-Newton methods for implicit black-box FSI coupling , 2014 .

[54]  Hester Bijl,et al.  Two level algorithms for partitioned fluid-structure interaction computations , 2006 .

[55]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[56]  Karen Willcox,et al.  Reduced-order aerodynamic models for aeroelastic control of turbomachines , 1999 .

[57]  Vinod Kumar,et al.  Numerical simulation of soft landing for clusters of cargo parachutes , 2004 .

[58]  Jan Vierendeels,et al.  Fluid-structure interaction simulation of the breaking wave slamming on an absorber for a wave-energy converter , 2011 .

[59]  D. Van Eester,et al.  Accelerating the solution of a physics model inside a tokamak using the (Inverse) Column Updating Method , 2015, J. Comput. Appl. Math..

[60]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[61]  Lidija Zdravković,et al.  Partitioned analysis of nonlinear soil-structure interaction using iterative coupling , 2008 .

[62]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[63]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[64]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[65]  Alexander Düster,et al.  A flexible multi‐physics coupling interface for partitioned solution approaches , 2012 .

[66]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[67]  Gregory W. Brown,et al.  Application of a three-field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter , 2003 .

[68]  F. Moukalled,et al.  A coupled finite volume solver for the solution of incompressible flows on unstructured grids , 2009, J. Comput. Phys..

[69]  Gilles Fourestey,et al.  A second-order time-accurate ALE Lagrange-Galerkin method applied to wind engineering and control of bridge profiles , 2004 .

[70]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[71]  Spencer J. Sherwin,et al.  Flutter instability prediction techniques for bridge deck sections , 2003 .

[72]  Dominique Pelletier,et al.  Some manufactured solutions for verification of fluid-structure interaction codes , 2012 .

[73]  Jan Vierendeels,et al.  Modal characteristics of a flexible cylinder in turbulent axial flow from numerical simulations , 2013 .

[74]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[75]  BENJAMIN UEKERMANN,et al.  A COMPARISON OF VARIOUS QUASI-NEWTON SCHEMES FOR PARTITIONED FLUID-STRUCTURE INTERACTION , 2015 .

[76]  Wael Elleithy,et al.  Interface relaxation algorithms for BEM–BEM coupling and FEM–BEM coupling , 2003 .

[77]  Schalk Kok,et al.  Extending the robustness and efficiency of artificial compressibility for partitioned fluid-structure interactions , 2015 .

[78]  Carlos A. Felippa,et al.  Partitioned vibration analysis of internal fluid‐structure interaction problems , 2012 .

[79]  Jan Vierendeels,et al.  Coupling of a Navier-Stokes solver and an elastic boundary solver for unsteady problems , 1998 .

[80]  Jan Vierendeels,et al.  Implicit coupling of partitioned fluid-structure interaction problems with reduced order models , 2007 .

[81]  Peng Ni,et al.  Anderson Acceleration of Fixed-point Iteration with Applications to Electronic Structure Computations , 2009 .

[82]  Jan Vierendeels,et al.  Fluid-structure interaction coupling techniques based on sensitivities , 2008 .

[83]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[84]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[85]  Jan Vierendeels,et al.  Partitioned simulation of the interaction between an elastic structure and free surface flow , 2010 .

[86]  Joris Degroote,et al.  On the Similarities Between the Quasi-Newton Inverse Least Squares Method and GMRes , 2010, SIAM J. Numer. Anal..