Combined compression and simplification of dynamic 3D meshes

We present a new approach to dynamic mesh compression, which combines compression with simplification to achieve improved compression results, a natural support for incremental transmission and level of detail. The algorithm allows fast progressive transmission of dynamic 3D content. Our scheme exploits both temporal and spatial coherency of the input data, and is especially efficient for the case of highly detailed dynamic meshes. The algorithm can be seen as an ultimate extension of the clustering and local coordinate frame (LCF)‐based approaches, where each vertex is expressed within its own specific coordinate system. The presented results show that we have achieved better compression efficiency compared to the state of the art methods. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  M. Garland,et al.  Quadric-Based Polygonal Surface Simplification , 1999 .

[2]  Jinsheng Xu,et al.  Optimizing octree motion representation for 3D animation , 2006, ACM-SE 44.

[3]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[4]  Jörn Ostermann,et al.  Connectivity-Guided Predictive Compression of Dynamic 3D Meshes , 2006, 2006 International Conference on Image Processing.

[5]  Michael Garland,et al.  Progressive multiresolution meshes for deforming surfaces , 2005, SCA '05.

[6]  Titus B. Zaharia,et al.  A skinning approach for dynamic 3D mesh compression , 2006, Comput. Animat. Virtual Worlds.

[7]  Ralf Sarlette,et al.  Simple and efficient compression of animation sequences , 2005, SCA '05.

[8]  Jarek Rossignac,et al.  Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity , 2003, SCA '03.

[9]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Jirí Zára,et al.  Skinning with dual quaternions , 2007, SI3D.

[11]  Michael Gleicher,et al.  Deformation Sensitive Decimation , 2003 .

[12]  Václav Skala,et al.  A Spatio-temporal Metric for Dynamic Mesh Comparison , 2006, AMDO.

[13]  Peter Eisert,et al.  Rate-distortion-optimized predictive compression of dynamic 3D mesh sequences , 2006, Signal Process. Image Commun..

[14]  Jovan Popovic,et al.  Continuous capture of skin deformation , 2003, ACM Trans. Graph..

[15]  N. Stefanoski,et al.  Scalable Linear Predictive Coding of Time-Consistent 3D Mesh Sequences , 2007, 2007 3DTV Conference.

[16]  Gary H. Meisters,et al.  POLYGONS HAVE EARS , 1975 .

[17]  L. Vasa,et al.  CODDYAC: Connectivity Driven Dynamic Mesh Compression , 2007, 2007 3DTV Conference.

[18]  Marc Antonini,et al.  Wavelet-based Compression of 3D Mesh Sequences , 2005 .

[19]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[20]  Peter Eisert,et al.  Predictive compression of dynamic 3D meshes , 2005, IEEE International Conference on Image Processing 2005.

[21]  Igor Guskov,et al.  Extracting Animated Meshes with Adaptive Motion Estimation , 2004, VMV.

[22]  Marc Alexa,et al.  Representing Animations by Principal Components , 2000, Comput. Graph. Forum.

[23]  Wolfgang Straßer,et al.  Efficient Compression of 3D Dynamic Mesh Sequences , 2007, J. WSCG.

[24]  Francoise Preteux,et al.  A skinning approach for dynamic 3D mesh compression: Research Articles , 2006 .

[25]  Craig Gotsman,et al.  Compression of soft-body animation sequences , 2004, Comput. Graph..

[26]  Pedro V. Sander,et al.  Geometry videos: a new representation for 3D animations , 2003, SCA '03.

[27]  Jed Lengyel,et al.  Compression of time-dependent geometry , 1999, SI3D.