A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature.

Thin plastic film-based CH3NH3PbI3-xClx perovskite solar cells were fabricated at low process temperature using a bilayer comprising an amorphous SnOx and mesoporous brookite TiO2 as electron collectors. Void-less high quality heterojunction structures achieve hysteresis-less photovoltaic performance with a power conversion efficiency as high as 13.4% and mechanical stability against cyclic bending.

[1]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[2]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[3]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[4]  S. Uchida,et al.  Origin of the Hysteresis in I–V Curves for Planar Structure Perovskite Solar Cells Rationalized with a Surface Boundary-induced Capacitance Model , 2015 .

[5]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[6]  T. Miyasaka,et al.  Impacts of Heterogeneous TiO2 and Al2O3 Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[7]  S. Uchida,et al.  Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells , 2015 .

[8]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[9]  Tsutomu Miyasaka,et al.  Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania , 2007 .

[10]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[11]  T. Miyasaka,et al.  High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions. , 2016, Chemical communications.

[12]  Steffen Meyer,et al.  Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. , 2016, ChemSusChem.

[13]  High Efficiency and Robust Performance of Organo Lead Perovskite Solar Cells with Large Grain Absorbers Prepared in Ambient Air Conditions , 2015 .

[14]  Tsutomu Miyasaka,et al.  Nb2O5 Blocking Layer for High Open-circuit Voltage Perovskite Solar Cells , 2015 .

[15]  Juan Bisquert,et al.  Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. , 2015, The journal of physical chemistry letters.

[16]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[17]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[18]  Tsutomu Miyasaka,et al.  Brookite TiO2 as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells , 2015 .

[19]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[20]  T. Miyasaka Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices , 2015 .

[21]  Leone Spiccia,et al.  Low temperature processing of flexible planar perovskite solar cells with efficiency over 10 , 2015 .

[22]  Jae Su Yu,et al.  Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells , 2016 .

[23]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[24]  Hans-Werner Schmidt,et al.  Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells , 2004 .

[25]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[26]  G. Fang,et al.  Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells , 2015 .

[27]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[28]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[29]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[30]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[31]  Lingamallu Giribabu,et al.  Recent advances in flexible perovskite solar cells. , 2015, Chemical communications.

[32]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[33]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[34]  Tsutomu Miyasaka,et al.  The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[35]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[36]  M. Ikegami,et al.  Anatase and Brookite Electron Collectors from Binder-free Precursor Pastes for Low Temperature Solution-processed Perovskite Solar Cells , 2016 .