Response measurement and optimization of direct mailings

Beginning with 1995, we discuss different studies that deal with response measurement and optimization of direct mailings. Most of these studies analyze data sets from mail order companies or charities. We classify various dependent and predictor variables and—w.r.t. the latter distinguish static and dynamic effects. Response models are divided into parametric and flexible models. Besides, we analyze important modeling aspects, i.e., latent heterogeneity and endogeneity. Optimization methods are presented according to whether they refer to static or dynamic objectives. Based on these modeling aspects we evaluate the different studies. Considering various studies of model evaluation it becomes evident that logit models frequently constitute a good choice. However, Bayesian neural nets and Tobit models turn out to be good alternatives. As predictor effects are concerned results vary. Authors do not completely agree on which variables are the most important. Furthermore, signs and significances of predictors vary across studies. The majority of studies neglect latent heterogeneity and endogeneity. Finally, results show that there are still plenty of interesting research possibilities, such as a comprehensive evaluation of models or new specifications of (mailing) variables.

[1]  Dirk Van den Poel,et al.  Predicting customer retention and profitability by using random forests and regression forests techniques , 2005, Expert Syst. Appl..

[2]  Robert C. Blattberg,et al.  Database Marketing: Analyzing and Managing Customers , 2008 .

[3]  Philip Hans Franses,et al.  Modeling charity donations: target selection, response time and gift size , 2000 .

[4]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[5]  Berend Wierenga,et al.  Handbook of Marketing Decision Models , 2008 .

[6]  Hon-Kwong Lui,et al.  Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming , 2006, Manag. Sci..

[7]  Yung-Keun Kwon,et al.  Personalized email marketing with a genetic programming circuit model , 2001 .

[8]  Füsun F. Gönül,et al.  Optimal Mailing of Catalogs: a New Methodology Using Estimable Structural Dynamic Programming Models , 1998 .

[9]  ChintaguntaPradeep,et al.  Structural Modeling in Marketing , 2006 .

[10]  Arnd Huchzermeier,et al.  Optimizing Rhenania´s Direct Marketing Business through Dynamic Multi-Level Modeling (DMLM) in a Multi-Catalog-Brand Environment , 2004 .

[11]  Frank M. Bass,et al.  DETERMINING THE EFFECTS OF OBSERVED AND UNOBSERVED HETEROGENEITY ON CONSUMER BRAND CHOICE , 1998 .

[12]  P. Desmet Comparaison de la prédictivité d'un réseau de neurones à rétropropagation avec celles des méthodes de régression linéaire, logistique et AID pour le calcul des scores en marketing direct , 1996 .

[13]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[14]  Toni M. Whited,et al.  TWO-STEP GMM ESTIMATION OF THE ERRORS-IN-VARIABLES MODEL USING HIGH-ORDER MOMENTS , 2002, Econometric Theory.

[15]  Sungzoon Cho,et al.  Response models based on bagging neural networks , 2005 .

[16]  Byung-Do Kim,et al.  Mailing smarter to catalog customers , 2000 .

[17]  Eric T. Anderson,et al.  Dynamics of Retail Advertising: Evidence from a Field Experiment , 2007 .

[18]  P. Franses,et al.  Dynamic and Competitive Effects of Direct Mailings: A Charitable Giving Application , 2009 .

[19]  Peter S. Fader,et al.  RFM and CLV: Using Iso-Value Curves for Customer Base Analysis , 2005 .

[20]  Edward L. Nash Direct Marketing: Strategy, Planning, Execution , 1982 .

[21]  Bart Baesens,et al.  Bayesian neural network learning for repeat purchase modelling in direct marketing , 2002, Eur. J. Oper. Res..

[22]  Harald Hruschka,et al.  Allocation of catalogs to collective customers based on semiparametric response models , 2005, Eur. J. Oper. Res..

[23]  Philip Hans Franses,et al.  Deriving target selection rules from endogenously selected samples , 2006 .

[24]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[25]  Nissan Levin,et al.  Applying neural computing to target marketing , 1997 .

[26]  Alan Julian Izenman,et al.  Modern Multivariate Statistical Techniques , 2008 .

[27]  S. Cosslett DISTRIBUTION-FREE MAXIMUM LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL1 , 1983 .

[28]  Arnd Huchzermeier,et al.  The 2003 ISMS Practice Prize Winner: Optimizing Rhenania's Direct Marketing Business Through Dynamic Multilevel Modeling (DMLM) in a Multicatalog-Brand Environment , 2004 .

[29]  Peter S. Fader,et al.  Customer-Base Analysis in a Discrete-Time Noncontractual Setting , 2009, Mark. Sci..

[30]  Dirk Van den Poel,et al.  FACULTEIT ECONOMIE , 2007 .

[31]  Nissan Levin,et al.  Continuous Predictive Modeling—A Comparative Analysis , 1998 .

[32]  Peter E. Rossi,et al.  The Value of Purchase History Data in Target Marketing , 1996 .

[33]  Nanda Piersma,et al.  Determining the optimal direct mailing frequency , 2004, Eur. J. Oper. Res..

[34]  M. Corstjens,et al.  A Model for Optimizing Retail Space Allocations , 1981 .

[35]  Paul D. Berger,et al.  Direct Marketing Management , 1989 .

[36]  Alfred Taudes,et al.  A dynamic segmentation approach for targeting and customizing direct marketing campaigns , 2006 .

[37]  Alan Julian Izenman,et al.  Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning , 2008 .

[38]  Nissan Levin,et al.  Predictive modeling using segmentation , 2001 .

[39]  Harald Hruschka,et al.  Neural Nets and Genetic Algorithms in Marketing , 2008 .

[40]  J. R. Bult,et al.  Optimal Selection for Direct Mail , 1995 .

[41]  Edward C. Malthouse,et al.  Ridge regression and direct marketing scoring models , 1999 .

[42]  Peter E. Rossi,et al.  Response Modeling with Nonrandom Marketing-Mix Variables , 2004 .

[43]  Arnd Huchzermeier,et al.  Special Issue: 2002 Franz Edelman Award for Achievement in Operations Research and the Management Sciences: Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM) , 2003, Interfaces.

[44]  Harald Hruschka,et al.  Considering endogeneity for optimal catalog allocation in direct marketing , 2010, Eur. J. Oper. Res..

[45]  Eric Bibelnieks,et al.  Optimizing Customer Mail Streams at Fingerhut , 2001, Interfaces.

[46]  Greg M. Allenby,et al.  A Bayesian Approach to Modeling Purchase Frequency , 2003 .

[47]  A. Cameron,et al.  Microeconometrics: Methods and Applications , 2005 .

[48]  Frenkel Ter Hofstede,et al.  How to Compute Optimal Catalog Mailing Decisions , 2006 .

[49]  Dick R. Wittink,et al.  Building models for marketing decisions: past, present and future , 2000 .

[50]  R. Rust,et al.  Optimizing the Marketing Interventions Mix in Intermediate-Term CRM , 2005 .

[51]  Peter E. Rossi,et al.  Structural Modeling in Marketing: Review and Assessment , 2004 .

[52]  S. McIntyre,et al.  Including the effects of prior and recent contact effort in a customer scoring model for database marketing , 2008 .

[53]  Euiho Suh,et al.  Customer list segmentation using the combined response model , 1999 .

[54]  Susana V. Mondschein,et al.  Mailing Decisions in the Catalog Sales Industry , 1996 .