How to Define Searching Sessions on Web Search Engines

In this research, we investigate three techniques for defining user sessions on Web search engines. We analyze 2,465,145 interactions from 534,507 Web searchers. We compare three methods for defining sessions using: 1) Internet Protocol address and cookie; 2) Internet Protocol address, cookie, and a temporal limit on intra-session interactions; and 3) Internet Protocol address, cookie, and query reformulation patterns. Research results shows that defining sessions by query reformulation provides the best measure of session identification, with a nearly 95% accuracy. This method also results in an 82% increase in the number of sessions compared to Internet Protocol address and cookie alone. Regardless of the method, mean session length was fewer than three queries and the mean session duration was less than 30 minutes. Implications are that unique sessions may be a better indicator than the common industry metric of unique visitors for measuring search traffic. Results of this research may lead to tools to better support Web searching.

[1]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.

[2]  James E. Pitkow,et al.  Characterizing Browsing Strategies in the World-Wide Web , 1995, Comput. Networks ISDN Syst..

[3]  Ben Shneiderman,et al.  Sorting out searching: a user-interface framework for text searches , 1998, CACM.

[4]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[5]  C. Lee Giles,et al.  Digital Libraries and Autonomous Citation Indexing , 1999, Computer.

[6]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[7]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[8]  Christos Faloutsos,et al.  Trends and Patterns of WWW Browsing Behavior , 2000 .

[9]  Bernard J. Jansen,et al.  A review of web searching studies and a framework for future research , 2001 .

[10]  Mark Hansen,et al.  Using navigation data to improve IR functions in the context of web search , 2001, CIKM '01.

[11]  Christos Faloutsos,et al.  Identifying Web Browsing Trends and Patterns , 2001, Computer.

[12]  Daqing He,et al.  Combining evidence for automatic Web session identification , 2002, Inf. Process. Manag..

[13]  Amanda Spink,et al.  From E-Sex to E-Commerce: Web Search Changes , 2002, Computer.

[14]  Amanda Spink,et al.  Multitasking information seeking and searching processes , 2002, J. Assoc. Inf. Sci. Technol..

[15]  Peter G. Anick Using terminological feedback for web search refinement: a log-based study , 2003, SIGIR.

[16]  Nicholas J. Belkin,et al.  Query length in interactive information retrieval , 2003, SIGIR.

[17]  Amanda Spink,et al.  An Analysis of Web Documents Retrieved and Viewed , 2003, International Conference on Internet Computing.

[18]  Ophir Frieder,et al.  Hourly analysis of a very large topically categorized web query log , 2004, SIGIR '04.

[19]  Bernard J. Jansen,et al.  Evaluating the effectiveness of and patterns of interactions with automated searching assistance , 2005, J. Assoc. Inf. Sci. Technol..

[20]  Amanda Spink,et al.  An analysis of Web searching by European AlltheWeb.com users , 2005, Inf. Process. Manag..

[21]  Filip Radlinski,et al.  Query chains: learning to rank from implicit feedback , 2005, KDD '05.

[22]  Amanda Spink,et al.  Web Search: Public Searching of the Web , 2011, Information Science and Knowledge Management.

[23]  Amanda Spink,et al.  Cross validation of neural network applications for automatic new topic identification , 2005, ASIST.

[24]  Bernard J. Jansen,et al.  Seeking and implementing automated assistance during the search process , 2005, Inf. Process. Manag..

[25]  A. Spink,et al.  Web Search: Public Searching of the Web (Information Science and Knowledge Management) , 2005 .

[26]  Joonho Lee,et al.  End user searching: A Web log analysis of NAVER, a Korean Web search engine , 2005 .

[27]  Huseyin Cenk Özmutlu,et al.  Application of automatic topic identification on Excite Web search engine data logs , 2005, Inf. Process. Manag..

[28]  Amanda Spink,et al.  A temporal comparison of AltaVista Web searching , 2005, J. Assoc. Inf. Sci. Technol..

[29]  Bernard J. Jansen,et al.  Evaluating the effectiveness of and patterns of interactions with automated searching assistance: Research Articles , 2005 .

[30]  Amanda Spink,et al.  Model for organizational knowledge creation and strategic use of information: Research Articles , 2005 .

[31]  Amanda Spink,et al.  A study of results overlap and uniqueness among major Web search engines , 2006, Inf. Process. Manag..

[32]  Amanda Spink,et al.  Web searching on the Vivisimo search engine , 2006 .

[33]  Amanda Spink,et al.  Multitasking during Web search sessions , 2006, Inf. Process. Manag..

[34]  Bernard J. Jansen Using temporal patterns of interactions to design effective automated searching assistance , 2006, CACM.

[35]  David Bodoff Relevance for browsing, relevance for searching , 2006 .

[36]  Amanda Spink,et al.  How are we searching the World Wide Web? A comparison of nine search engine transaction logs , 2006, Inf. Process. Manag..

[37]  Amanda Spink,et al.  Web searcher interaction with the Dogpile.com metasearch engine , 2007 .

[38]  Seda Özmutlu,et al.  Cross-validation of neural network applications for automatic new topic identification , 2008, J. Assoc. Inf. Sci. Technol..