Latent Embeddings of Point Process Excitations

When specific events seem to spur others in their wake, marked Hawkes processes enable us to reckon with their statistics. The underdetermined empirical nature of these event-triggering mechanisms hinders estimation in the multivariate setting. Spatiotemporal applications alleviate this obstacle by allowing relationships to depend only on relative distances in real Euclidean space; we employ the framework as a vessel for embedding arbitrary event types in a new latent space. By performing synthetic experiments on short records as well as an investigation into options markets and pathogens, we demonstrate that learning the embedding alongside a point process model uncovers the coherent, rather than spurious, interactions.

[1]  Mingxuan Sun,et al.  Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks , 2019, AAAI.

[2]  John P. Cunningham,et al.  Deep Random Splines for Point Process Intensity Estimation , 2019, DGS@ICLR.

[3]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[4]  Milos Hauskrecht,et al.  Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes , 2019, NeurIPS.

[5]  Soren Hauberg,et al.  Variational Autoencoders with Riemannian Brownian Motion Priors , 2020, ICML.

[6]  Gavin J. Gibson,et al.  Comparison and Assessment of Epidemic Models , 2018 .

[7]  Utkarsh Upadhyay,et al.  Recurrent Marked Temporal Point Processes: Embedding Event History to Vector , 2016, KDD.

[8]  Jason Eisner,et al.  The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process , 2016, NIPS.

[9]  Anthony S. Courakis,et al.  Inflation, Depression and Economic Policy in the West , 1982 .

[10]  John N. Tsitsiklis,et al.  When Is a Network Epidemic Hard to Eliminate? , 2015, Math. Oper. Res..

[11]  George Mohler,et al.  Marked point process hotspot maps for homicide and gun crime prediction in Chicago , 2014 .

[12]  Trevor Campbell,et al.  Universal Boosting Variational Inference , 2019, NeurIPS.

[13]  Alexander Cloninger,et al.  Variational Diffusion Autoencoders with Random Walk Sampling , 2019, ECCV.

[14]  E. Dong,et al.  An interactive web-based dashboard to track COVID-19 in real time , 2020, The Lancet Infectious Diseases.

[15]  Roger G. Ghanem,et al.  Data-driven probability concentration and sampling on manifold , 2016, J. Comput. Phys..

[16]  Matthew Crosby,et al.  Association for the Advancement of Artificial Intelligence , 2014 .

[17]  Scott W. Linderman,et al.  Mutually Regressive Point Processes , 2019, NeurIPS.

[18]  Argyris Kalogeratos,et al.  Multivariate Hawkes Processes for Large-Scale Inference , 2016, AAAI.

[19]  Christl A. Donnelly,et al.  A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making , 2015, Scientific Data.

[20]  Edwin V. Bonilla,et al.  Structured Variational Inference in Continuous Cox Process Models , 2019, NeurIPS.

[21]  Laetitia Gauvin,et al.  weg2vec: Event embedding for temporal networks , 2019, Scientific Reports.

[22]  James R. Foulds,et al.  HawkesTopic: A Joint Model for Network Inference and Topic Modeling from Text-Based Cascades , 2015, ICML.

[23]  Kun Zhang,et al.  Learning Network of Multivariate Hawkes Processes: A Time Series Approach , 2016, UAI.

[24]  Junjie Wu,et al.  Embedding Temporal Network via Neighborhood Formation , 2018, KDD.

[25]  Vlado Menkovski,et al.  Diffusion Variational Autoencoders , 2019, IJCAI.

[26]  Naonori Ueda,et al.  Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information , 2019, KDD.

[27]  Aram Galstyan,et al.  Latent self-exciting point process model for spatial-temporal networks , 2014 .

[28]  Hongyuan Zha,et al.  Learning Granger Causality for Hawkes Processes , 2016, ICML.

[29]  Matthias Grossglauser,et al.  Learning Hawkes Processes from a Handful of Events , 2019, NeurIPS.

[30]  Matthew Le,et al.  Learning Multivariate Hawkes Processes at Scale , 2020, ArXiv.

[31]  Anatoliy Swishchuk,et al.  General Compound Hawkes Processes in Limit Order Books , 2017, Risks.

[32]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[33]  Emmanuel Bacry,et al.  Second order statistics characterization of Hawkes processes and non-parametric estimation , 2014, 1401.0903.

[34]  Ronald R. Coifman,et al.  Multivariate time-series analysis and diffusion maps , 2015, Signal Process..

[35]  Austin R. Benson,et al.  Neural Jump Stochastic Differential Equations , 2019, NeurIPS.

[36]  Guangliang Chen,et al.  Large-scale spectral clustering using diffusion coordinates on landmark-based bipartite graphs , 2018, TextGraphs@NAACL-HLT.

[37]  S. Flaxman,et al.  Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge” , 2018, The Annals of Applied Statistics.

[38]  Mohammad Emtiyaz Khan,et al.  Bayesian Nonparametric Poisson-Process Allocation for Time-Sequence Modeling , 2018, AISTATS.

[39]  C. Fraser,et al.  Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013–2016 , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Emmanuel Bacry,et al.  Uncovering Causality from Multivariate Hawkes Integrated Cumulants , 2016, ICML.

[41]  Mikko S. Pakkanen,et al.  State-dependent Hawkes processes and their application to limit order book modelling , 2018, Quantitative Finance.

[42]  Yao Xie,et al.  Crime Event Embedding with Unsupervised Feature Selection , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[43]  Le Song,et al.  Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes , 2013, AISTATS.

[44]  Jiawei He,et al.  Point Process Flows , 2019, ArXiv.

[45]  Philip S. Yu,et al.  Temporal Network Embedding with Micro- and Macro-dynamics , 2019, CIKM.

[46]  Stephen J. Roberts,et al.  Latent Point Process Allocation , 2016, AISTATS.

[47]  P. D. de Groen An Introduction to Total Least Squares , 1996 .

[48]  Peter F. Halpin,et al.  Modelling Dyadic Interaction with Hawkes Processes , 2013, Psychometrika.

[49]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[50]  Roger Newson,et al.  Parameters behind “Nonparametric” Statistics: Kendall's tau, Somers’ D and Median Differences , 2002 .

[51]  Mason A. Porter,et al.  Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction , 2018, SIAM J. Math. Data Sci..

[52]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[53]  Yao Xie,et al.  Reinforcement Learning of Spatio-Temporal Point Processes , 2019, ArXiv.

[54]  J. McFadden The Entropy of a Point Process , 1965 .

[55]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Generative Sequential Stochastic Model for Marked Point Processes , 2019 .

[57]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[58]  Scott W. Linderman,et al.  Scalable Bayesian Inference for Excitatory Point Process Networks , 2015, 1507.03228.

[59]  Le Song,et al.  Learning Triggering Kernels for Multi-dimensional Hawkes Processes , 2013, ICML.

[61]  Vijay K. Devabhaktuni,et al.  The Block Point Process Model for Continuous-time Event-based Dynamic Networks , 2017, WWW.

[62]  A. Veen,et al.  Estimation of Space–Time Branching Process Models in Seismology Using an EM–Type Algorithm , 2006 .

[63]  Ali M. Kutan,et al.  Option moneyness and price disagreements , 2018 .

[64]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[65]  George E. Tita,et al.  Self-Exciting Point Process Modeling of Crime , 2011 .

[66]  T. Berger,et al.  General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. , 2005, Mathematical biosciences.

[67]  Rui Zhang,et al.  Efficient Non-parametric Bayesian Hawkes Processes , 2018, IJCAI.

[68]  Kazuyuki Aihara,et al.  Fully Neural Network based Model for General Temporal Point Processes , 2019, NeurIPS.

[69]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .