Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies

Abstract– The 0.35–2.5 μm reflectance spectra of iron meteorite powders and slabs have been studied as a function of composition, surface texture (for slabs), grain size (for powders), and viewing geometry (for powders). Powder spectra are invariably red-sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10–15% at 0.56 μm). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red-sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22–74% at 0.56 μm), and are also red-sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M-asteroids. The magnitude of spectral variations between M-asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M-asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation.

[1]  Mark S. Robinson,et al.  Ultraviolet spectral reflectance properties of common planetary minerals , 2008 .

[2]  I. Belskaya,et al.  On the surface composition of the M-type asteroids , 1989 .

[3]  G. Neukum,et al.  Ni- and Fe-Powders: Grain size effects and compositional influence on the spectral reflectance , 1991 .

[4]  Edward F. Tedesco,et al.  Asteroid magnitudes, UBV colors, and IRAS albedos and diameters , 1989 .

[5]  R. W. Bild Silicate inclusions in group IAB irons and a relation to the anomalous stones Winona and Mt Morris (Wis) , 1977 .

[6]  J. Wasson Ungrouped Iron Meteorites in Antarctica: Origin of Anomalously High Abundance , 1990, Science.

[7]  R. Clayton,et al.  Properties of the Guin ungrouped iron meteorite: the origin of Guin and of group-IIE irons , 1986 .

[8]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids , 2008 .

[9]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[10]  R. Schoelkopf,et al.  Primary Electronic Thermometry Using the Shot Noise of a Tunnel Junction , 2003, Science.

[11]  K. Keil,et al.  Mineralogy and petrology of silicate inclusions in iron meteorites , 1970 .

[12]  Klaus Keil,et al.  Thermal alteration of asteroids: evidence from meteorites , 2000 .

[13]  M. Gaffey,et al.  Asteroid surface materials: Mineralogical characterizations from reflectance spectra , 1977 .

[14]  B. Buratti,et al.  Ultraviolet Spectra and Geometric Albedos of 45 Asteroids , 1994 .

[15]  A. Brecher Internal Constitution and Mechanisms of Asteroid Fragmentation , 1971 .

[16]  John S. Rinehart,et al.  Some Quantitative Data Bearing on the Scabbing of Metals under Explosive Attack , 1951 .

[17]  H. Newsom,et al.  Igneous activity in the early solar system. , 1988 .

[18]  R. Gordon Mechanical properties of iron meteorites and the structure of their parent planets , 1970 .

[19]  H. McSween,et al.  Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating , 1993, Science.

[20]  W. Spicer,et al.  Experimental Determination of the Optical Density of States in Iron , 1967 .

[21]  Andrew Scott Rivkin,et al.  The Nature of M-Class Asteroids from 3-μm Observations☆ , 2000 .

[22]  S. Ostro,et al.  Radar observations of asteroid 216 kleopatra , 2000, Science.

[23]  H. Haack,et al.  Genesis of the IIICD iron meteorites - Evidence from silicate-bearing inclusions , 1993 .

[24]  M. F. Comerford Comparative erosion rates of stone and iron meteorites under small-particle bombardment , 1967 .

[25]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[26]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[27]  R. Brett Cohenite: its occurrence and a proposed origin , 1967 .

[28]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[29]  I. Shapiro,et al.  Radar Observations of Asteroids 7 Iris, 9 Metis, 12 Victoria, 216 Kleopatra, and 654 Zelinda , 1995 .

[30]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[31]  T. Hiroi,et al.  A method to determine silicate abundances from reflectance spectra with applications to asteroid 29 amphitrite associating it with primitive achondrite meteorites , 1990 .

[32]  D. Morrison,et al.  Taxonomy of asteroids , 1978 .

[33]  I. Shapiro,et al.  Asteroid 1986 DA: Radar Evidence for a Metallic Composition , 1991, Science.

[34]  John L. Remo,et al.  The low temperature impact properties of the meteorite hoba , 1979 .

[35]  D. Davis,et al.  Photometric geodesy of main-belt asteroids: III. Additional lightcurves , 1990 .

[36]  V. Buchwald The mineralogy of iron meteorites , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[37]  Dorian G. W. Smith,et al.  Reflectance spectra of 'featureless' materials and the surface mineralogies of M- and E-class asteroids , 1990 .

[38]  M. Gaffey A systematic study of the spectral reflectivity characteristics of the meteorite classes with applications to the interpretation of asteroid spectra for mineralogical and petrological information , 1974 .

[39]  K. Keil,et al.  A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body , 2000 .

[40]  Vishal Mehra,et al.  High velocity impact of metal sphere on thin metallic plates: A comparative smooth particle hydrodynamics study , 2006, J. Comput. Phys..

[41]  M. Shepard,et al.  Spectroscopy of X-Type Asteroids , 2004 .

[42]  V. Buchwald Handbook of iron meteorites , 1975 .

[43]  V. Busarev Spectral Features of M-Asteroids: 75 Eurydike and 201 Penelope , 1998 .

[44]  L. Starukhina,et al.  Water detection on atmosphereless celestial bodies: Alternative explanations of the observations , 2001 .

[45]  M. Shepard,et al.  Observations of X/M asteroids across multiple wavelengths , 2008 .

[46]  J. Margot,et al.  A Low-Density M-type Asteroid in the Main Belt , 2003, Science.

[47]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[48]  S. Ostro,et al.  A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003 , 2007 .

[49]  Paul A. Abell,et al.  Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids , 2005 .

[50]  Mark Boslough,et al.  Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations , 1994 .

[51]  I. Shapiro,et al.  Mainbelt Asteroids: Dual-Polarization Radar Observations , 1985, Science.

[52]  J. Salisbury,et al.  Meteorite spectra and weathering , 1974 .

[53]  A. Dollfus,et al.  6. The Nature of Asteroid Surfaces, from Optical Polarimetry , 1977 .

[54]  J. Bell,et al.  Modeling of S-type asteroid spectra using primitive achondrites and iron meteorites , 1993 .

[55]  J. Gradie,et al.  Minor planets and related objects. XX - Polarimetric evidence for the albedos and compositions of 94 asteroids , 1976 .

[56]  J. Bell,et al.  Diaspores and related hydroxides: Spectral‐compositional properties and implications for Mars , 2000 .

[57]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[58]  H. Axon,et al.  Complex Shock-Induced Fe-Ni-S-Cr-C Melts in the Haig (IIIA) Iron Meteorite , 1981 .

[59]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[60]  M. Birlan,et al.  New determination of the size and bulk density of the binary Asteroid 22 Kalliope from observations of mutual eclipses , 2007, 0710.1471.

[61]  J. Bell,et al.  Spectral comparison between olivine-rich asteroids and pallasites , 1993 .

[62]  J. Delaney,et al.  Modal studies of mesosiderites and related achondrites, including the new mesosiderite ALHA 77219 , 1980 .

[63]  Audouin Dollfus,et al.  The nature of the M-type asteroids from optical polarimetry , 1979 .

[64]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[65]  D. Davis,et al.  Photometric Geodesy of main-belt asteroids. I. Lightcurves of 26 large, rapid rotators , 1987 .

[66]  P. Buseck Pallasite meteorites—mineralogy, petrology and geochemistry , 1977 .

[67]  J. Kruger,et al.  Optical Constants of Iron in the Visible Region , 1965 .

[68]  John L. Remo,et al.  A preliminary study of the ductile‐brittle transition under impact conditions in material from an octahedrite , 1975 .

[69]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .

[70]  D. Britt,et al.  3-μm Spectrophotometric Survey of M- and E-Class Asteroids , 1995 .

[71]  E. Scott,et al.  First Nitride (CrN) in Iron Meteorites , 1971 .

[72]  I. Shapiro,et al.  Mainbelt Asteroids: Results of Arecibo and Goldstone Radar Observations of 37 Objects during 1980-1995 , 1998 .

[73]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[74]  E. Palik Handbook of Optical Constants of Solids , 1997 .