Thermally assisted photonic inversion of supramolecular handedness.
暂无分享,去创建一个
Masayuki Takeuchi | Seiichi Furumi | Ayyappanpillai Ajayaghosh | A. Ajayaghosh | S. Furumi | M. Takeuchi | Anesh Gopal | Mohamed Hifsudheen | Anesh Gopal | Mohamed Hifsudheen
[1] H. Segawa,et al. Magneto-chiral dichroism of organic compounds. , 2011, Angewandte Chemie.
[2] Katsuhiko Ariga,et al. Challenges and breakthroughs in recent research on self-assembly , 2008, Science and technology of advanced materials.
[3] Stephen F. Mason,et al. Origins of biomolecular handedness , 1984, Nature.
[4] Gebhard Haberhauer,et al. Ein verbrücktes Azobenzol‐Derivat als reversibler lichtinduzierter Chiralitätsschalter , 2010 .
[6] T. Aida,et al. Spectroscopic visualization of vortex flows using dye-containing nanofibers. , 2007, Angewandte Chemie.
[7] A. Ajayaghosh,et al. Self-assembly of tripodal squaraines: Cation-assisted expression of molecular chirality and change from spherical to helical morphology. , 2007, Angewandte Chemie.
[8] E. W. Meijer,et al. Insight into the mechanisms of cooperative self-assembly: the "sergeants-and-soldiers" principle of chiral and achiral C3-symmetrical discotic triamides. , 2008, Journal of the American Chemical Society.
[9] Zhijian Chen,et al. Self-assembled pi-stacks of functional dyes in solution: structural and thermodynamic features. , 2009, Chemical Society reviews.
[10] Hao Jiang,et al. Chiroptical switch based on azobenzene-substituted polydiacetylene LB films under thermal and photic stimuli , 2010 .
[11] R. Purrello,et al. Vortexes and nanoscale chirality. , 2010, Angewandte Chemie.
[12] S. Hecht,et al. Prototype of a photoswitchable foldamer. , 2006, Angewandte Chemie.
[13] R. Nolte,et al. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity , 1999, Science.
[14] J. Podlech. NEUE EINBLICKE IN DEN URSPRUNG DER HOMOCHIRALITAT BIOLOGISCH RELEVANTER MOLEKULE : GRUNDSTOFFE DES LEBENS AUS DEM ALL ? , 1999 .
[15] A. Ajayaghosh,et al. Transcription and amplification of molecular chirality to oppositely biased supramolecular pi helices. , 2006, Angewandte Chemie.
[16] E. W. Meijer,et al. Chiralitätsverstärkung in dynamischen supramolekularen Aggregaten , 2007 .
[17] E. W. Meijer,et al. Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. , 2007, Angewandte Chemie.
[18] Hao Jiang,et al. Control and modulation of chirality for azobenzene-substituted polydiacetylene LB films with circularly polarized light. , 2009, Chemical communications.
[19] M. Gershwin,et al. The Origin of Life and the Left-Handed Amino-Acid Excess: The Furthest Heavens and the Deepest Seas? , 2006, Experimental biology and medicine.
[20] E. W. Meijer,et al. Pathway complexity in supramolecular polymerization , 2012, Nature.
[21] R. S. Zola,et al. Light-driven reversible handedness inversion in self-organized helical superstructures. , 2010, Journal of the American Chemical Society.
[22] Werner Fuss,et al. Does life originate from a single molecule? , 2009, Chirality.
[23] F. Sagués,et al. Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions , 2001, Science.
[24] Pedro Cintas,et al. Absolute Asymmetric Synthesis under Physical Fields: Facts and Fictions. , 1998, Chemical reviews.
[25] H. Kuhn. Origin of life — Symmetry breaking in the universe: Emergence of homochirality , 2008 .
[26] G Andrew Woolley,et al. Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.
[27] Asymmetric photochemistry and photochirogenesis. , 2002, Angewandte Chemie.
[28] M. Liu,et al. Hierarchical co-assembly of chiral lipid nanotubes with an azobenzene derivative: optical and chiroptical switching , 2011 .
[29] B. Feringa,et al. Control of dynamic helicity at the macro- and supramolecular level. , 2008, Soft matter.
[30] Ben L. Feringa,et al. Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light , 1996, Science.
[31] Gary B. Schuster,et al. Switching a Helical Polymer between Mirror Images Using Circularly Polarized Light , 2000 .
[32] F. Würthner,et al. Evolution of homochiral helical dye assemblies: involvement of autocatalysis in the "majority-rules" effect. , 2008, Angewandte Chemie.
[33] T. Yamashita,et al. Circularly polarized luminescence of rhodamine B in a supramolecular chiral medium formed by a vortex flow. , 2011, Angewandte Chemie.
[34] J. Llorens,et al. Emergence of supramolecular chirality by flows. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.
[35] S. Hecht,et al. Reversible and quantitative denaturation of amphiphilic oligo(azobenzene) foldamers. , 2011, Angewandte Chemie.
[36] Ben L Feringa,et al. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality , 2004, Science.
[37] E. W. Meijer,et al. Amplification of chirality in dynamic supramolecular aggregates. , 2007, Angewandte Chemie.
[38] P. Duan,et al. Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality. , 2011, The journal of physical chemistry. B.
[39] A. Ajayaghosh,et al. From vesicles to helical nanotubes: a sergeant-and-soldiers effect in the self-assembly of oligo(p-phenyleneethynylene)s. , 2006, Angewandte Chemie.
[40] P. K. Hashim,et al. Induction of point chirality by E/Z photoisomerization. , 2011, Angewandte Chemie.
[41] G. Rikken,et al. Enantioselective magnetochiral photochemistry , 2000, Nature.
[42] J. Hough,et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.
[43] Uwe J. Meierhenrich,et al. Asymmetrische Photochemie und Photochirogenese , 2002 .
[44] Y. Tohda,et al. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .
[45] Koichi Yamashita,et al. Redox-responsive molecular helices with highly condensed π-clouds. , 2011, Nature chemistry.
[46] D. Kondepudi,et al. Weak neutral currents and the origin of biomolecular chirality , 1985, Nature.
[47] Theo Rasing,et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. , 2009, Nature chemistry.
[48] S. Yagai,et al. Recent advances in photoresponsive supramolecular self-assemblies. , 2008, Chemical Society reviews.
[49] H. Engelkamp,et al. Selection of supramolecular chirality by application of rotational and magnetic forces. , 2012, Nature chemistry.
[50] Xuan Zhang,et al. Hierarchical assembly of a phthalhydrazide-functionalized helicene. , 2011, Angewandte Chemie.
[51] C. Kaiser,et al. Prototyp eines photoschaltbaren Foldamers , 2006 .
[52] R. Janssen,et al. CIRCULARLY POLARIZED ELECTROLUMINESCENCE FROM A POLYMER LIGHT-EMITTING DIODE , 1997 .
[53] G. Haberhauer,et al. A bridged azobenzene derivative as a reversible, light-induced chirality switch. , 2010, Angewandte Chemie.
[54] Rudolf Zentel,et al. Photochemical Inversion of the Helical Twist Sense in Chiral Polyisocyanates , 1995 .
[55] Qijin Zhang,et al. Photoinduced chirality in achiral liquid crystalline azobenzene polymers containing different polar side groups , 2007 .
[56] Y. Takanishi,et al. Circular-polarization-induced enantiomeric excess in liquid crystals of an achiral, bent-shaped mesogen. , 2006, Angewandte Chemie.
[57] B. Feringa,et al. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. , 2008, Journal of the American Chemical Society.
[58] E. W. Meijer,et al. Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly , 2006, Science.
[59] B. Feringa,et al. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. , 2007, Angewandte Chemie.
[60] N. Berova,et al. Circular Dichroism: Principles and Applications , 1994 .
[61] J. E. Field,et al. Circularly polarized luminescence from bridged triarylamine helicenes. , 2003, Journal of the American Chemical Society.