Unorthodox Interactions at Work.

This Perspective elaborates on the currently unfolding interest in integrating unorthodox non-covalent interactions into functional systems. Initial emphasis is on anion-π interactions at work, particularly in catalysis. Recent highlights are described in comparison to a coinciding renaissance of the more conventional, charge-inverted cation-π catalysis. Progress with these complementary aromatic systems is then compared to recent efforts to integrate halogen and chalcogen bonds, the unorthodox counterparts of hydrogen bonds, into functional systems. General focus is on catalysis, pertinent examples on self-assembly, transport, sensing, and templation are covered as well.

[1]  S. Matile,et al.  Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces. , 2016, Angewandte Chemie.

[2]  Gevorg Sargsyan,et al.  Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces. , 2016, Chemistry.

[3]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[4]  De‐Xian Wang,et al.  Self-Assembly and Disassembly of Vesicles as Controlled by Anion-π Interactions. , 2015, Angewandte Chemie.

[5]  S. Huber,et al.  Cationic Multidentate Halogen-Bond Donors in Halide Abstraction Organocatalysis: Catalyst Optimization by Preorganization. , 2015, Journal of the American Chemical Society.

[6]  S. Matile,et al.  Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces. , 2015, Journal of the American Chemical Society.

[7]  S. Matile,et al.  Selective acceleration of disfavored enolate addition reactions by anion–π interactions† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments. See DOI: 10.1039/c5sc02563j , 2015, Chemical science.

[8]  Antonio Bauzá,et al.  The bright future of unconventional σ/π-hole interactions. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  T. Wesołowski,et al.  Ion Pair-π Interactions. , 2015, Journal of the American Chemical Society.

[10]  K. Rissanen,et al.  Anion-π Interactions with Fluoroarenes. , 2015, Chemical reviews.

[11]  M. Saito,et al.  Direct Dehydroxylative Coupling Reaction of Alcohols with Organosilanes through Si-X Bond Activation by Halogen Bonding. , 2015, Organic letters.

[12]  B. Beno,et al.  A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. , 2015, Journal of medicinal chemistry.

[13]  Qi Zhang,et al.  Terpene cyclization catalysed inside a self-assembled cavity. , 2015, Nature chemistry.

[14]  S. Minakata,et al.  2-Halogenoimidazolium salt catalyzed aza-Diels-Alder reaction through halogen-bond formation. , 2015, Organic letters.

[15]  E. Derivery,et al.  Fluorescent Flippers for Mechanosensitive Membrane Probes , 2015, Journal of the American Chemical Society.

[16]  P. Beer,et al.  An all-halogen bonding rotaxane for selective sensing of halides in aqueous media. , 2014, Angewandte Chemie.

[17]  Somnath Das,et al.  Anion-binding catalysis by electron-deficient pyridinium cations. , 2014, Angewandte Chemie.

[18]  Yusuke Kobayashi,et al.  Electrophilic iodine(I) compounds induced semipinacol rearrangement via C-X bond cleavage. , 2014, Chemical communications.

[19]  T. Wesołowski,et al.  Anion-π and cation-π interactions on the same surface. , 2014, Angewandte Chemie.

[20]  Chen Zhao,et al.  Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. , 2014, Journal of the American Chemical Society.

[21]  Choon‐Hong Tan,et al.  Halogen-bonding-induced hydrogen transfer to C═N bond with Hantzsch ester. , 2014, Organic letters.

[22]  S. Huber,et al.  Activation of a carbonyl compound by halogen bonding. , 2014, Chemical communications.

[23]  S. Matile,et al.  Anion-π catalysis. , 2014, Journal of the American Chemical Society.

[24]  Severin T. Schneebeli,et al.  Electron sharing and anion-π recognition in molecular triangular prisms. , 2013, Angewandte Chemie.

[25]  Qi Zhang,et al.  Hexameric resorcinarene capsule is a Brønsted acid: investigation and application to synthesis and catalysis. , 2013, Journal of the American Chemical Society.

[26]  S. Matile,et al.  Catalysis with anion-π interactions. , 2013, Angewandte Chemie.

[27]  J. Rebek,et al.  Amplified halogen bonding in a small space. , 2013, Journal of the American Chemical Society.

[28]  Klaus Bergander,et al.  Noncovalent interactions in organocatalysis: modulating conformational diversity and reactivity in the MacMillan catalyst. , 2013, Angewandte Chemie.

[29]  P. Ballester Experimental quantification of anion-π interactions in solution using neutral host-guest model systems. , 2013, Accounts of chemical research.

[30]  S. Matile,et al.  Transmembrane halogen-bonding cascades. , 2013, Journal of the American Chemical Society.

[31]  K. Dunbar,et al.  Anion-π interactions in supramolecular architectures. , 2013, Accounts of chemical research.

[32]  M. Chudziński,et al.  Halogen bonding in solution: thermodynamics and applications. , 2013, Chemical Society reviews.

[33]  B. List,et al.  Asymmetric counteranion-directed catalysis: concept, definition, and applications. , 2013, Angewandte Chemie.

[34]  A. Joerger,et al.  Principles and applications of halogen bonding in medicinal chemistry and chemical biology. , 2013, Journal of medicinal chemistry.

[35]  F Dean Toste,et al.  Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. , 2012, Journal of the American Chemical Society.

[36]  Zhan-Ting Li,et al.  C-H···O hydrogen bonding induced triazole foldamers: efficient halogen bonding receptors for organohalogens. , 2012, Angewandte Chemie.

[37]  S. Yamada,et al.  Nitrogen cation-π interactions in asymmetric organocatalytic synthesis. , 2011, Organic & biomolecular chemistry.

[38]  A. Frontera,et al.  Putting anion-π interactions into perspective. , 2011, Angewandte Chemie.

[39]  E. Tippmann,et al.  Probing eudesmane cation-π interactions in catalysis by aristolochene synthase with non-canonical amino acids. , 2011, Journal of the American Chemical Society.

[40]  S. Huber,et al.  Halogen-bond-induced activation of a carbon-heteroatom bond. , 2011, Angewandte Chemie.

[41]  F. Diederich,et al.  Aromatic rings in chemical and biological recognition: energetics and structures. , 2011, Angewandte Chemie.

[42]  T. Kawai,et al.  Photon-quantitative reaction of a dithiazolylarylene in solution. , 2011, Angewandte Chemie.

[43]  C. Leverett,et al.  Enantioselective, organocatalyzed, intramolecular aldol lactonizations with keto acids leading to bi- and tricyclic β-lactones and topology-morphing transformations. , 2010, Angewandte Chemie.

[44]  M. Mayor,et al.  Experimental evidence for the functional relevance of anion-pi interactions. , 2010, Nature chemistry.

[45]  P. Dubois,et al.  Controlled room temperature ROP of L-lactide by ICl3: a simple halogen-bonding catalyst , 2010 .

[46]  E. Jacobsen,et al.  Enantioselective thiourea-catalyzed cationic polycyclizations. , 2010, Journal of the American Chemical Society.

[47]  J. Lacour,et al.  Chiral anion-mediated asymmetric ion pairing chemistry. , 2009, Chemical communications.

[48]  D. Herschlag,et al.  Evaluating the potential for halogen bonding in the oxyanion hole of ketosteroid isomerase using unnatural amino acid mutagenesis. , 2009, ACS chemical biology.

[49]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[50]  C. Bolm,et al.  Organocatalysis through Halogen-Bond Activation , 2008 .

[51]  C. Grey,et al.  Pressure-induced polymerization of diiodobutadiyne in assembled cocrystals. , 2008, Journal of the American Chemical Society.

[52]  Mario Leclerc,et al.  Optical detection of DNA and proteins with cationic polythiophenes. , 2008, Accounts of chemical research.

[53]  S. Matile,et al.  Rigid oligonaphthalenediimide rods as transmembrane anion-pi slides. , 2006, Journal of the American Chemical Society.

[54]  V. B. Birman,et al.  Benzotetramisole: a remarkably enantioselective acyl transfer catalyst. , 2006, Organic letters.

[55]  P. Frère,et al.  3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems , 2005 .

[56]  E. Giralt,et al.  De novo protein surface design: use of cation-pi interactions to enhance binding between an alpha-helical peptide and a cationic molecule in 50 % aqueous solution. , 2002, Angewandte Chemie.

[57]  T. Schrader,et al.  Optimization of a synthetic arginine receptor. Systematic tuning of noncovalent interactions. , 2001, The Journal of organic chemistry.

[58]  D. MacMillan,et al.  New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction , 2000 .

[59]  H. Schneider,et al.  Attractive interactions between negative charges and polarizable aryl parts of host–guest systems , 1993 .

[60]  D. Stauffer,et al.  Biomimetic Catalysis of an SN2 Reaction Resulting from a Novel Form of Transition-State Stabilization† , 1990 .

[61]  A. Frontera,et al.  Salt-bridge–π (sb–π) interactions at work: associative interactions of sb–π, π–π and anion–π in Cu(II)-malonate–2-aminopyridine–hexafluoridophosphate ternary system , 2013 .

[62]  De‐Xian Wang,et al.  Anion recognition by charge neutral electron-deficient arene receptors. , 2011, Chimia.