The influence of image descriptors’ dimensions’ value cardinalities on large-scale similarity search

In this empirical study, we evaluate the impact of the dimensions’ value cardinality (DVC) of image descriptors in each dimension, on the performance of large-scale similarity search. DVCs are inherent characteristics of image descriptors defined for each dimension as the number of distinct values of image descriptors, thus expressing the dimension’s discriminative power. In our experiments, with six publicly available datasets of image descriptors of different dimensionality (64–5,000 dim) and size (240 K–1 M), (a) we show that DVC varies, due to the existence of several extraction methods using different quantization and normalization techniques; (b) we also show that image descriptor extraction strategies tend to follow the same DVC distribution function family; therefore, similarity search strategies can exploit image descriptors DVCs, irrespective of the sizes of the datasets; (c) based on a canonical correlation analysis, we demonstrate that there is a significant impact of image descriptors’ DVCs on the performance of the baseline LSH method [8] and three state-of-the-art hashing methods: SKLSH [28], PCA-ITQ [10], SPH [12], as well as on the performance of MSIDX method [34], which exploits the DVC information; (d) we experimentally demonstrate the influence of DVCs in both the sequential search and in the aforementioned similarity search methods and discuss the advantages of our findings. We hope that our work will motivate researchers for considering DVC analysis as a tool for the design of similarity search strategies in image databases.

[1]  Regunathan Radhakrishnan,et al.  Compact hashing with joint optimization of search accuracy and time , 2011, CVPR 2011.

[2]  Wei-Ying Ma,et al.  OCFS: optimal orthogonal centroid feature selection for text categorization , 2005, SIGIR '05.

[3]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[4]  Shiri Gordon,et al.  Unsupervised image-set clustering using an information theoretic framework , 2006, IEEE Transactions on Image Processing.

[5]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[6]  Svetlana Lazebnik,et al.  Locality-sensitive binary codes from shift-invariant kernels , 2009, NIPS.

[7]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[8]  Ling Huang,et al.  Fast approximate spectral clustering , 2009, KDD.

[9]  Chong-Wah Ngo,et al.  Evaluating bag-of-visual-words representations in scene classification , 2007, MIR '07.

[10]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[11]  Zi Huang,et al.  Multiple feature hashing for real-time large scale near-duplicate video retrieval , 2011, ACM Multimedia.

[12]  Shih-Fu Chang,et al.  Spherical hashing , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[14]  Antonio Torralba,et al.  Object Recognition by Scene Alignment , 2007, NIPS.

[15]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[16]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[17]  Petros Daras,et al.  MSIDX: Multi-Sort Indexing for Efficient Content-Based Image Search and Retrieval , 2013, IEEE Transactions on Multimedia.

[18]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[19]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[20]  Wenyu Jiang,et al.  Optimal configuration of hash table based multimedia fingerprint databases using weak bits , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[21]  Remco C. Veltkamp,et al.  Selecting vantage objects for similarity indexing , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[22]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[23]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[24]  Antonio Torralba,et al.  Nonparametric scene parsing: Label transfer via dense scene alignment , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[26]  Shih-Fu Chang,et al.  Semi-supervised hashing for scalable image retrieval , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[28]  John Daintith,et al.  A Dictionary of Computing , 1986 .

[29]  Anil K. Jain,et al.  Feature extraction methods for character recognition-A survey , 1996, Pattern Recognit..

[30]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..

[31]  Zhanyi Hu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Rotationally Invariant Descript , 2011 .

[32]  Weiguo Fan,et al.  Trace-Oriented Feature Analysis for Large-Scale Text Data Dimension Reduction , 2011, IEEE Transactions on Knowledge and Data Engineering.

[33]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[35]  Zi Huang,et al.  Locality condensation: a new dimensionality reduction method for image retrieval , 2008, ACM Multimedia.

[36]  Olivier Buisson,et al.  Random maximum margin hashing , 2011, CVPR 2011.

[37]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  D. Rh International symposium on pain. , 1973 .

[39]  Zi Huang,et al.  Effective data co-reduction for multimedia similarity search , 2011, SIGMOD '11.

[40]  Rajeev Agrawal,et al.  Image Clustering Using Visual and Text Keywords , 2007, 2007 International Symposium on Computational Intelligence in Robotics and Automation.

[41]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[42]  Michael Jump,et al.  Equivalence of BRISK Descriptors for the Registration of Variable Bit-Depth Aerial Imagery , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[43]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.