Designing Reservoirs for 1/t Decoherence of a Qubit

Anomalous decoherence in the Jaynes-Cummings model emerges for a certain class of bosonic reservoirs, described by spectral densities with a band gap edge frequency coinciding with the qubit transition frequency. The special reservoirs are piecewise similar to those usually adopted in quantum optics, i.e., sub-ohmic at low frequencies and inverse power laws at high frequencies. The exact dynamics of the qubit is described analytically through Fox H-functions. Over estimated long time scales, decoherence results in inverse power laws with powers decreasing continuously to unity, according to the particular choice of the special reservoir. The engineering reservoir approach is a new way of strongly delaying the decoherence process with possible applications to quantum technologies, due to the simple form of the designed reservoirs.

[1]  Steven G. Johnson,et al.  Strain-tunable silicon photonic band gap microcavities in optical waveguides , 2004 .

[2]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[3]  Fundamental quantum optics in structured reservoirs , 2000 .

[4]  Francesco Petruccione,et al.  Reservoir for inverse-power-law decoherence of a qubit , 2010, 1011.0059.

[5]  M. S. Zubairy,et al.  Quantum optics: Dedication , 1997 .

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  Knight,et al.  Cavity modified quantum beats. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[9]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[10]  Quang,et al.  Spontaneous emission near the edge of a photonic band gap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[12]  A. Kilbas,et al.  On the H-function , 1998, math/9803163.

[13]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[14]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[15]  Barry M. Garraway,et al.  DECAY OF AN ATOM COUPLED STRONGLY TO A RESERVOIR , 1997 .

[16]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[17]  M. S. Zubairy,et al.  Quantum optics: Quantum theory of the laser – density operator approach , 1997 .

[18]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[19]  Bassano Vacchini,et al.  Exact master equations for the non-Markovian decay of a qubit , 2010, 1002.2172.

[20]  B. M. Garraway,et al.  Nonperturbative decay of an atomic system in a cavity , 1997 .

[21]  U. Weiss Quantum Dissipative Systems , 1993 .

[22]  M. Scalora,et al.  Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[23]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[24]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[25]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[26]  C. cohen-tannoudji,et al.  Atom-photon interactions , 1992 .