Advance in thermo-optical switches: principles, materials, design, and device structure

All-optical networking can be the sole approach to provide the huge bandwidth required for future networks. The essential elements in such an optical network are optical switches. A number of options have been proposed in order to implement them efficiently. We focus on thermo-optical switches. First, the physical principles of the thermo-optic effect are briefly introduced. A description of the most common technologies used for the fabrication of thermo-optic switches is provided along with the values of thermo-optic coefficient for a number of materials. The main steps useful in order to design thermo-optical switches are also briefly introduced. Finally, a bird's-eye view of the main and recent proposals of switches based on the thermo-optic effect is reported and their performances compared.

[1]  Yong Hyub Won,et al.  Polymer waveguide thermo-optic switches with −70 dB optical crosstalk , 2006 .

[2]  Ying Zhang,et al.  Thermo-optic waveguide digital optical switch using symmetrically coupled gratings. , 2005, Optics express.

[3]  Yuan Song,et al.  Synthesis, characterization and optical properties of fluorinated poly(aryl ether)s containing phthalazinone moieties , 2008 .

[4]  N. Dagli,et al.  Low-power thermooptical tuning of SOI resonator switch , 2006, IEEE Photonics Technology Letters.

[5]  Michael E. Thomas,et al.  Aluminum Oxide (Al2O3) Revisited , 1997 .

[6]  N. D. Rooij,et al.  Micro-opto-mechanical 2/spl times/2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation , 1999 .

[7]  Gorachand Ghosh,et al.  Handbook of thermo-optic coefficients of optical materials with applications , 1998 .

[8]  R. C. Williamson,et al.  Submicrosecond submilliwatt silicon-on-insulator thermooptic switch , 2004, IEEE Photonics Technology Letters.

[9]  Luigi Moretti,et al.  Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions , 2005 .

[10]  Guorong Cao,et al.  Synthesis, characterization, thermal stability and thermo-optical properties of poly(urethane-imide) , 2009 .

[11]  William Green,et al.  Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control. , 2005, Optics express.

[12]  Shinji Ando,et al.  Anisotropy in thermo-optic coefficients of polyimide films formed on Si substrates , 2003 .

[13]  K. Yokoyama,et al.  The perfectly matched layer (PML) boundary condition for the beam propagation method , 1996, IEEE Photonics Technology Letters.

[14]  Yong Hyub Won,et al.  Thermooptic 2/spl times/2 asymmetric digital optical switches with zero-voltage operation state , 2004 .

[15]  Hau Ping Chan,et al.  A vertically coupled polymer optical waveguide switch , 2005 .

[16]  G. V. Treyz Silicon Mach-Zehnder waveguide interferometers operating at 1.3 mu m , 1991 .

[17]  P. Sun,et al.  Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. , 2010, Optics express.

[18]  X.M. Zhang,et al.  Thermal-Optic Switch by Total Internal Reflection of Micromachined Silicon Prism , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Byeong-Soo Bae,et al.  The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films , 2004 .

[20]  Biswanath Mukherjee,et al.  Advances in photonic packet switching: an overview , 2000, IEEE Commun. Mag..

[21]  Wei Jiang,et al.  Thermooptically Tuned Photonic Crystal Waveguide Silicon-on-Insulator Mach–Zehnder Interferometers , 2007, IEEE Photonics Technology Letters.

[22]  K. Satzke,et al.  Hybrid polymer/silica vertical coupler switch with <-32 dB polarisation-independent crosstalk , 2001 .

[23]  Min-Cheol Oh,et al.  Asymmetric X-junction thermooptic switches based on fluorinated polymer waveguides , 1998 .

[24]  Ricky W. Chuang,et al.  2 × 2 Thermo-Optic Silicon Oxynitride Optical Switch Based on the Integrated Multimode Interference Waveguides , 2010 .

[25]  Sang-Pil Han,et al.  Crosstalk-Enhanced DOS Integrated with Modified Radiation-Type Attenuators , 2008 .

[26]  K. Petermann,et al.  Crosstalk-enhanced polymer digital optical switch based on a W-shape , 2000, IEEE Photonics Technology Letters.

[27]  Mike S Ferraro,et al.  Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. , 2007, Optics express.

[28]  Jinsheng Luo,et al.  Silicon 1*2 digital optical switch using plasma dispersion , 1994 .

[29]  Ai Qun Liu,et al.  Advanced fiber optical switches using deep RIE (DRIE) fabrication , 2003 .

[30]  Zhiyi Zhang,et al.  Thermo-optic coefficients of polymers for optical waveguide applications , 2006 .

[31]  Robert Scarmozzino,et al.  Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits , 1996 .

[32]  A. Rubino,et al.  Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition. , 1996, Optics letters.

[33]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[34]  Gerald Earle Jellison,et al.  The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths , 1986 .

[35]  Jeong-Bong Lee,et al.  Thermo-optic photonic crystal light modulator , 2005 .

[36]  Xuming Zhang,et al.  Light switching via thermo-optic effect of micromachined silicon prism , 2006 .

[37]  T. Goh,et al.  Low-power consumption silica-based 2 x 2 thermooptic switch using trenched silicon substrate , 1999, IEEE Photonics Technology Letters.

[38]  Seung Gol Lee,et al.  Wavelength tunable thermo-optic filter using buckling effect of etalon composed poly-Si/SiO2 multi-layers , 2005 .

[39]  M. Lipson,et al.  Compact silicon tunable Fabry-Perot resonator with low power consumption , 2004, IEEE Photonics Technology Letters.

[40]  S. Senturia Microsystem Design , 2000 .

[41]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[42]  G. Papadimitriou,et al.  Optical switching: switch fabrics, techniques, and architectures , 2003 .

[43]  Ivo Rendina,et al.  Thermo-optical modulation at 1.5 mu m in silicon etalon , 1992 .

[44]  Luigi Sirleto,et al.  Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide. , 2006 .

[45]  Trevor M. Benson,et al.  Novel vectorial analysis of optical waveguides , 1998 .

[46]  Y. Arakawa,et al.  Thermooptic switch based on photonic-crystal line-defect waveguides , 2005, IEEE Photonics Technology Letters.

[47]  Xiaoqing Jiang,et al.  Optical switch based on multimode interference coupler , 2006 .

[48]  E. E. Havinga,et al.  Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds , 1963 .

[49]  T. Aalto,et al.  Sub-/spl mu/s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch , 2004, IEEE Photonics Technology Letters.

[50]  G Ghosh Thermo-optic coefficients of LiNbO(3), LiIO(3), and LiTaO(3) nonlinear crystals. , 1994, Optics letters.

[51]  Ai Qun Liu,et al.  A micromachined optical double well for thermo-optic switching via resonant tunneling effect , 2008 .

[52]  Peng-Chun Peng,et al.  An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring , 2001 .

[53]  Lawrence W. Shacklette,et al.  Tunable planar polymer Bragg gratings having exceptionally low polarization sensitivity , 2003 .

[54]  M. Naci Inci Simultaneous measurements of the thermal optical and linear thermal expansion coefficients of a thin film etalon from the reflection spectra of a super-luminescent diode , 2004 .

[55]  Doo-Sun Choi,et al.  Vertical digital thermooptic switch in polymer , 2004 .

[56]  Yasuhiko Arakawa,et al.  Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides. , 2005, Optics express.

[57]  E. E. Havinga The temperature dependence of dielectric constants , 1961 .

[58]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[59]  J.S. Barton,et al.  Multimode interference-based two-stage 1 /spl times/ 2 light splitter for compact photonic integrated circuits , 2003, IEEE Photonics Technology Letters.

[60]  M. Suffczyński,et al.  Optical Constants of Metals , 1960 .

[61]  J. Yardley,et al.  Fast and low-power thermooptic switch on thin silicon-on-insulator , 2003, IEEE Photonics Technology Letters.

[62]  Werner J. Blau,et al.  Thermo-optic mode extinction modulation in polymeric waveguide structures , 1995 .

[63]  Ivo Rendina,et al.  Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm , 1999 .

[64]  Lih Y. Lin,et al.  Opportunities and challenges for MEMS in lightwave communications , 2002 .

[65]  Hitoshi Kawashima,et al.  Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides. , 2010, Optics express.

[66]  Lei Xu,et al.  Compact asymmetric 1 × 2 multimode interference optical switch , 2009 .

[67]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[68]  H. Melchior,et al.  Low-power compact 2/spl times/2 thermooptic silica-on-silicon waveguide switch with fast response , 1998, IEEE Photonics Technology Letters.

[69]  C Torres-Torres,et al.  Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon-nitride film. , 2008, Optics express.

[70]  Chengkuo Lee,et al.  Novel VOA using in-plane reflective micromirror and off-axis light attenuation , 2003, IEEE Commun. Mag..

[71]  K. Petermann,et al.  Polymer digital optical switch with an integrated attenuator , 2001, IEEE Photonics Technology Letters.

[72]  G. Ghosh,et al.  Temperature dispersion of refractive indices in crystalline and amorphous silicon , 1995 .

[73]  Bernard Bendow,et al.  Theory of the Temperature Derivative of the Refractive Index in Transparent Crystals , 1973 .

[74]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[75]  Norbert Keil,et al.  (2/spl times/2) digital optical switch realised by low cost polymer waveguide technology , 1996 .

[76]  Xiaohua Ma,et al.  Optical switching technology comparison: optical MEMS vs. other technologies , 2003, IEEE Commun. Mag..

[77]  Luigi Moretti,et al.  Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 μm , 2001 .

[78]  E.Y.B. Pun,et al.  Fabrication of low loss optical waveguides with a novel thermo-optical polymer material , 2006 .

[79]  Z. Cao,et al.  Influence of dopant concentration on thermo-optic properties of PMMA composite , 2006 .

[80]  Siegfried Janz,et al.  Compact and low power thermo-optic switch using folded silicon waveguides. , 2009, Optics express.

[81]  E. S. Trommel,et al.  Polymeric optical waveguide switch using the thermooptic effect , 1989 .

[82]  E. Meland,et al.  Wavelength- and polarization-independent large angle InP/lnGaAsP digital optical switches with extinction ratios exceeding 20 dB , 1994, IEEE Photonics Technology Letters.

[83]  I. Lundström,et al.  TEMPERATURE SENSITIVITY AND THERMAL EXPANSION COEFFICIENT OF BENZOCYCLOBUTENE THIN FILMS STUDIED WITH ELLIPSOMETRY , 1996 .

[84]  Ai Qun Liu,et al.  Micromachined optical well structure for thermo-optic switching , 2007 .