The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information

The Predikin webserver allows users to predict substrates of protein kinases. The Predikin system is built from three components: a database of protein kinase substrates that links phosphorylation sites with specific protein kinase sequences; a perl module to analyse query protein kinases and a web interface through which users can submit protein kinases for analysis. The Predikin perl module provides methods to (i) locate protein kinase catalytic domains in a sequence, (ii) classify them by type or family, (iii) identify substrate-determining residues, (iv) generate weighted scoring matrices using three different methods, (v) extract putative phosphorylation sites in query substrate sequences and (vi) score phosphorylation sites for a given kinase, using optional filters. The web interface provides user-friendly access to each of these functions and allows users to obtain rapidly a set of predictions that they can export for further analysis. The server is available at http://predikin.biosci.uq.edu.au.

[1]  P. Bork,et al.  Systematic Discovery of In Vivo Phosphorylation Networks , 2007, Cell.

[2]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[3]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[4]  Jorng-Tzong Horng,et al.  KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites , 2005, Nucleic Acids Res..

[5]  N. Blom,et al.  Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. , 1999, Journal of molecular biology.

[6]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[7]  Hiroaki Kitano,et al.  The PANTHER database of protein families, subfamilies, functions and pathways , 2004, Nucleic Acids Res..

[8]  B. Kobe,et al.  Structural basis and prediction of substrate specificity in protein serine/threonine kinases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Leszek Rychlewski,et al.  FFAS03: a server for profile–profile sequence alignments , 2005, Nucleic Acids Res..

[10]  Yu Xue,et al.  GPS: a comprehensive www server for phosphorylation sites prediction , 2005, Nucleic Acids Res..

[11]  Michael B. Yaffe,et al.  Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs , 2003, Nucleic Acids Res..

[12]  Amos Bairoch,et al.  The PROSITE database , 2005, Nucleic Acids Res..

[13]  Yu Xue,et al.  PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory , 2006, BMC Bioinformatics.

[14]  Sam A. Johnson,et al.  Kinomics: methods for deciphering the kinome , 2004, Nature Methods.

[15]  Peer Bork,et al.  SMART 5: domains in the context of genomes and networks , 2005, Nucleic Acids Res..

[16]  Oleksandr V. Buzko,et al.  A kinase sequence database: sequence alignments and family assignment , 2002, Bioinform..

[17]  T. Gibson,et al.  Protein disorder prediction: implications for structural proteomics. , 2003, Structure.

[18]  Nikolaj Blom,et al.  Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins , 2004, BMC Bioinformatics.

[19]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[20]  Bostjan Kobe,et al.  Substrate specificity of protein kinases and computational prediction of substrates. , 2005, Biochimica et biophysica acta.