A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers
暂无分享,去创建一个
[1] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[2] Philippe Flajolet. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[3] William Y. C. Chen,et al. The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..
[4] David Callan. NOTES ON MOTZKIN AND SCHR ODER NUMBERS , 2007 .
[5] M. Aigner. Catalan and other numbers: a recurrent theme , 2001 .
[6] Martin Aigner,et al. Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.
[7] Bruce E. Sagan. LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .
[8] Richard P. Stanley. Catalan Addendum , 2013 .
[9] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[10] Li Liu,et al. On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..
[11] Bruce E. Sagan,et al. Inductive and injective proofs of log concavity results , 1988, Discret. Math..
[12] Tomislav Došlić,et al. Seven (Lattice) Paths to Log-Convexity , 2010 .
[13] Arthur L. B. Yang,et al. Schur positivity and the q-log-convexity of the Narayana polynomials , 2008, 0806.1561.
[14] Bao-Xuan Zhu,et al. Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..