RankBrushers: interactive analysis of temporal ranking ensembles

Temporal ranking ensembles indicate time-evolving multivariate rankings. Such data can be commonly found in our daily life, for example, different rankings of universities (QS, ARWU, THE, and USNews) over year and those of NBA players over season. Effective analysis and tracking of rankings allow users to gain insights into the overall ranking change over time and seek the explanation for the change. This paper introduces a novel visual analytics approach for characterizing and visualizing the uncertainty, dynamics, and differences of ranking ensemble data. A novel visual design is proposed to characterize the evolution pattern, distribution, and uncertainty of a large number of temporal ranking ensembles. The evolutionary ranking ensembles are progressively explored, tracked, and compared by means of an intuitive visualization system. Two case studies and a task-driven user study conducted on real datasets demonstrate the effectiveness and feasibility of the implemented system.

[1]  Xiaolong Zhang,et al.  Structure-Based Suggestive Exploration: A New Approach for Effective Exploration of Large Networks , 2019, IEEE Transactions on Visualization and Computer Graphics.

[2]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[3]  Mingliang Xu,et al.  Margin & diversity based ordering ensemble pruning , 2018, Neurocomputing.

[4]  Wei Chen,et al.  ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots , 2020, IEEE Transactions on Visualization and Computer Graphics.

[5]  Joe Michael Kniss,et al.  Visualizing Summary Statistics and Uncertainty , 2010, Comput. Graph. Forum.

[6]  Wei Chen,et al.  A Survey of Visual Analytic Pipelines , 2016, Journal of Computer Science and Technology.

[7]  Xiaoru Yuan,et al.  TrajRank: Exploring travel behaviour on a route by trajectory ranking , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[8]  Fang Liu,et al.  Visual Analytics for Spatial Clusters of Air-Quality Data , 2017, IEEE Computer Graphics and Applications.

[9]  Anthony K. H. Tung,et al.  EasySVM: A visual analysis approach for open-box support vector machines , 2017, Computational Visual Media.

[10]  Fei Wang,et al.  A visual analytical approach for transfer learning in classification , 2017, Inf. Sci..

[11]  Guy Lebanon,et al.  Visualizing Incomplete and Partially Ranked Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Hanspeter Pfister,et al.  LineUp: Visual Analysis of Multi-Attribute Rankings , 2013, IEEE Transactions on Visualization and Computer Graphics.

[13]  Cheryl Z. Qian,et al.  Visualizing Rank Time Series of Wikipedia Top-Viewed Pages , 2017, IEEE Computer Graphics and Applications.

[14]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[15]  Xiaoru Yuan,et al.  Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data , 2018, J. Vis. Lang. Comput..

[16]  Björn Zehner,et al.  Visualization of gridded scalar data with uncertainty in geosciences , 2010, Comput. Geosci..

[17]  Zhiguang Zhou,et al.  Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[18]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[19]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[20]  Ross Maciejewski,et al.  Exploring the Sensitivity of Choropleths under Attribute Uncertainty , 2020, IEEE Transactions on Visualization and Computer Graphics.

[21]  Andrew T. Wilson,et al.  Toward visual analysis of ensemble data sets , 2009, UltraVis '09.

[22]  Greg S. Schmidt,et al.  Multidimensional visual representations for underwater environmental uncertainty , 2004, IEEE Computer Graphics and Applications.

[23]  Rüdiger Westermann,et al.  Multi-Charts for Comparative 3D Ensemble Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[24]  Ran Chen,et al.  SRVis: Towards Better Spatial Integration in Ranking Visualization , 2019, IEEE Transactions on Visualization and Computer Graphics.

[25]  Robert S. Laramee,et al.  Smart Brushing for Parallel Coordinates , 2019, IEEE Transactions on Visualization and Computer Graphics.

[26]  Amitabh Varshney,et al.  Representing thermal vibrations and uncertainty in molecular surfaces , 2002, IS&T/SPIE Electronic Imaging.

[27]  Kwan-Liu Ma,et al.  Visual cluster exploration of web clickstream data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[28]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[29]  Mingxuan Sun,et al.  Visualizing differences in web search algorithms using the expected weighted hoeffding distance , 2010, WWW '10.

[30]  Xavier Ochoa,et al.  Towards a visual guide for communicating uncertainty in Visual Analytics , 2019, J. Comput. Lang..

[31]  Silvia Miksch,et al.  Characterizing Guidance in Visual Analytics , 2017, IEEE Transactions on Visualization and Computer Graphics.

[32]  Maria Riveiro,et al.  Evaluation of uncertainty visualization techniques for information fusion , 2007, 2007 10th International Conference on Information Fusion.

[33]  Daniel Weiskopf,et al.  Progressive Splatting of Continuous Scatterplots and Parallel Coordinates , 2011, Comput. Graph. Forum.

[34]  P. Riehmann,et al.  Interactive Sankey diagrams , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[35]  Dimitrios Papadopoulos,et al.  BitExTract: Interactive Visualization for Extracting Bitcoin Exchange Intelligence , 2019, IEEE Transactions on Visualization and Computer Graphics.

[36]  Neeharika Adabala,et al.  Uncertainty visualization using HDR volume rendering , 2011, The Visual Computer.

[37]  Yifan Hu,et al.  Multilevel agglomerative edge bundling for visualizing large graphs , 2011, 2011 IEEE Pacific Visualization Symposium.

[38]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[39]  Ying Zhao,et al.  A survey of visualization for smart manufacturing , 2018, Journal of Visualization.

[40]  Wei Chen,et al.  RankExplorer: Visualization of Ranking Changes in Large Time Series Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[41]  Andrew Mercer,et al.  Uncertainty-Aware Multidimensional Ensemble Data Visualization and Exploration , 2015, IEEE Transactions on Visualization and Computer Graphics.

[42]  S. Vogt,et al.  MAP D‐PHASE: real‐time demonstration of hydrological ensemble prediction systems , 2008 .

[43]  John Grady,et al.  Visualizing trends and clusters in ranked time-series data , 2013, Electronic Imaging.

[44]  Fei Wang,et al.  Mobility Viewer: An Eulerian Approach for Studying Urban Crowd Flow , 2016, IEEE Transactions on Intelligent Transportation Systems.

[45]  Feng Luo,et al.  Evaluating Multi-Dimensional Visualizations for Understanding Fuzzy Clusters , 2019, IEEE Transactions on Visualization and Computer Graphics.

[46]  Olivier Thonnard,et al.  LDA Ensembles for Interactive Exploration and Categorization of Behaviors , 2020, IEEE Transactions on Visualization and Computer Graphics.

[47]  Yun Wang,et al.  EnsembleLens: Ensemble-based Visual Exploration of Anomaly Detection Algorithms with Multidimensional Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[48]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[49]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[50]  Daniel Weiskopf,et al.  Flow Radar Glyphs—Static Visualization of Unsteady Flow with Uncertainty , 2011, IEEE Transactions on Visualization and Computer Graphics.