Water vapor retrieval over ocean using near‐infrared radiometry

[1] A methodology is presented and evaluated to retrieve vertically integrated water vapor content over the ocean in any viewing geometry from POLDER data. The methodology is based on differential absorption by water vapor in the near-infrared. Over the ocean, except in sun glint conditions, surface reflectance is small, and interaction between aerosol scattering and water vapor absorption is exploited to estimate total water vapor content. A sensitivity study performed with an accurate radiative transfer code (GAME) shows that a determination of total water vapor content is theoretically possible if the optical thickness and scale height of aerosols are known. An inaccuracy of 0.1 to 0.6 g cm−2 is expected, depending on water vapor content. The aerosol optical thickness δa at 865 nm is available from POLDER standard products. The aerosol scale height Ha can be estimated from the surface pressure derived from POLDER oxygen channels at 763 and 765 nm. A retrieval scheme is devised using parameterizations calculated using GAME for water vapor and surface pressure. The inversion scheme is applied to 20 POLDER orbits with observed water vapor contents ranging from 0.2 to 6 g cm−2. Comparisons with SSM/I estimates indicate a RMS error ranging from 0.21 to 0.58 g cm−2, depending on water vapor content, with a mean RMS error of 0.44 g cm−2. This result is slightly larger than deviations obtained between POLDER and SSM/I during the POLDER standard product validation over ocean in sun glint conditions (mean RMS error of 0.42 g cm−2).

[1]  T. Eck,et al.  Optical Properties of Atmospheric Aerosol in Maritime Environments , 2002 .

[2]  Philippe Dubuisson,et al.  Surface pressure estimates from satellite data in the oxygen A‐band: Applications to the MOS sensor over land , 2001 .

[3]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[4]  Didier Tanré,et al.  Atmospheric water vapor content from spaceborne POLDER measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  M. Rast,et al.  The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission , 1999 .

[6]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[7]  G. Domoto Frequency integration for radiative transfer problems involving homogeneous non-gray gases: The inverse transmission function , 1974 .

[8]  Graeme L. Stephens,et al.  The Parameterization of Radiation for Numerical Weather Prediction and Climate Models , 1984 .

[9]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[10]  P. Dubuisson,et al.  High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulation , 1996 .

[11]  S. A. Snyder,et al.  Determination of oceanic total precipitable water from the SSM/I , 1990 .

[12]  N. Scott,et al.  A direct method of computation of the transmission function of an inhomogeneous gaseous medium— I: Description of the method , 1974 .

[13]  Ralf Bennartz,et al.  Retrieval of columnar water vapour over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer , 2001 .

[14]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[15]  James P. Hollinger,et al.  SSM/I instrument evaluation , 1990 .

[16]  François-Marie Bréon,et al.  Land Surface Pressure Estimate from Measurements in the Oxygen A Absorption Band. , 1996 .

[17]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[18]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[19]  In-flight spectral calibration of the oxygen A-band channel of MERIS , 2003 .

[20]  D. Murcray Optical Properties of the Atmosphere , 1968 .

[21]  Didier Tanré,et al.  Atmospheric water vapor estimate by a differential absorption technique with the polarisation and directionality of the Earth reflectances (POLDER) instrument , 1997 .

[22]  Frank J. Wentz,et al.  A Well Calibrated Ocean Algorithm for SSM/I , 1999 .

[23]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[24]  J. Hansen,et al.  A parameterization for the absorption of solar radiation in the earth's atmosphere , 1974 .

[25]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[26]  L. Phalippou,et al.  Variational retrieval of humidity profile, wind speed and cloud liquid‐water path with the SSM/I: Potential for numerical weather prediction , 1996 .

[27]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[28]  Xavier Briottet,et al.  Results of POLDER in-flight calibration , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[30]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[31]  H. Gordon Atmospheric correction of ocean color imagery in the Earth Observing System era , 1997 .

[32]  Robert Frouin,et al.  Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940 nm: Theory and Airborne Verification , 1990 .

[33]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[34]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[35]  Michèle Vesperini ECMWF analyses of humidity: comparisons to POLDER estimates over land , 2002 .

[36]  David Crisp,et al.  Intercomparison of shortwave radiative transfer codes and measurements , 2005 .

[37]  W. Malkmus,et al.  Random Lorentz band model with exponential-tailed S-1 line-intensity distribution function , 1967 .

[38]  Jean-Jacques Morcrette,et al.  The Surface Downward Longwave Radiation in the ECMWF Forecast System , 2002 .

[39]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[40]  Ralf Bennartz,et al.  Remote Sensing of Atmospheric Water Vapor from Backscattered Sunlight in Cloudy Atmospheres , 2001 .