Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents

Non-isothermal crystallization and subsequent melting of three grades of ethylene-vinyl acetate copolymer were investigated by differential scanning calorimetry (DSC) technique. The DSC crystallization curves show that vinyl acetate (VAc) content has the same effect on the onset, peak and final crystallization temperatures, and these copolymers have almost the same spacing of thermal windows under identical crystallization condition. Subsequent melting DSC results suggest that EVA14 (14 wt% VAc) has the narrowest distribution of lamellar thickness and the most perfect crystals. Though the instantaneous nucleation was preferred, non-isothermal crystallization kinetics shows that EVA14 could form tridimensional crystallites, whereas EVA18 (18 wt% VAc) and EVA28 (28 wt% VAc) are prone to crystallize two-dimen- sionally, as a result of more noncrystallizable VAc co-monomers introduced in the crystallizable ethylene segments. The growth rate falls on the following sequence: EVA14>EVA18>EVA28. Moreover, the kinetic crystallizability G also well characterizes the variation of the non-isothermal crystallization of these EVA materials, in the view of structural impedi- ment caused by the VAc content.

[1]  Biao Wang,et al.  Non-isothermal crystallization kinetics and melting behaviors of nylon 11/tetrapod-shaped ZnO whisker (T-ZnOw) composites , 2007 .

[2]  Y. Gao,et al.  Non-isothermal crystallization kinetics of syndiotactic polystyrene - polystyrene functionalized SWNTs nanocomposites , 2007 .

[3]  Chaobin He,et al.  Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core , 2006 .

[4]  Ming-tao Run,et al.  Morphology, isothermal and non-isothermal crystallization kinetics of poly(methylene terephthalate) , 2006 .

[5]  P. Supaphol,et al.  Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers , 2004 .

[6]  H. Kim,et al.  Nonisothermal crystallization and melting behavior of the copolymer derived from p-dioxanone and poly(ethylene glycol) , 2003 .

[7]  Xurong Xu,et al.  Nonisothermal crystallization kinetics of ethylene–butene copolymer/low‐density polyethylene blends , 2001 .

[8]  Zhaobin Qiu,et al.  Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) , 2000 .

[9]  A. Faleiros,et al.  Kinetics of phase change , 2000 .

[10]  X. Kong,et al.  Nonisothermal crystallization kinetics of ethylene terephthalate–ethylene oxide segmented copolymers with two crystallizing segments , 2000 .

[11]  Tianxi Liu,et al.  Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) , 1997 .

[12]  A.M. Henderson,et al.  Ethylene-vinyl acetate (EVA) copolymers: a general review , 1993, IEEE Electrical Insulation Magazine.

[13]  S. Rana,et al.  Mechanical properties and morphology of high‐density polyethylene/linear low‐density polyethylene blend , 1992 .

[14]  M. Kamal,et al.  Isothermal and nonisothermal crystallization of polyethylene , 1983 .

[15]  J. Menczel,et al.  The melting of high-pressure polyethylene subjected to stepwise heat treatment , 1979 .

[16]  A. Jeziorny Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. , 1978 .

[17]  H. L. Morris Tpr Thermoplastic Rubber , 1973 .

[18]  P. F. Onyon Polymer Handbook , 1972, Nature.

[19]  P. Kamath,et al.  Crystallinity of ethylene–vinyl acetate copolymers , 1965 .

[20]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[21]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[22]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .