Exact maximum likelihood estimators for drift fractional Brownian motions
暂无分享,去创建一个
Zhang Weiguo | Hu Yaozhong | Hu Yaozhong | Xiao Weilin | Z. Weiguo | Xiao Weilin | Yaozhong Hu | Weilin Xiao | Weiguo Zhang
[1] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[2] J. Azéma,et al. Seminaire de Probabilites XXXIV , 2000 .
[3] Vern Paxson,et al. Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.
[4] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[5] W. Palma. Long-Memory Time Series: Theory and Methods , 2007 .
[6] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[7] E. Hannan. The asymptotic theory of linear time-series models , 1973, Journal of Applied Probability.
[8] A unified approach to several inequalities for gaussian and diffusion measures , 2000 .
[9] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] David Nualart,et al. Central limit theorems for multiple stochastic integrals and Malliavin calculus , 2007 .
[12] B. Øksendal,et al. Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .
[13] Nicolas Privault,et al. Stein estimation for the drift of Gaussian processes using the Malliavin calculus , 2008, 0811.1153.
[14] David Nualart,et al. Parameter estimation for fractional Ornstein–Uhlenbeck processes , 2009, 0901.4925.
[15] M. Taqqu,et al. Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .
[16] G. Peccati,et al. Stein’s method and exact Berry–Esseen asymptotics for functionals of Gaussian fields , 2008, 0803.0458.
[17] Z. Weiping,et al. The superiority of empirical bayes estimation of parameters in partitioned normal linear model , 2008 .