CdSe/ZnS quantum dot encapsulated MoS2 phototransistor for enhanced radiation hardness

[1]  G. Yoo,et al.  Wavelength-selective enhancement of photo-responsivity in metal-gated multi-layer MoS2 phototransistors , 2017 .

[2]  G. Yoo,et al.  Bias-dependent photoresponsivity of multi-layer MoS2 phototransistors , 2017, Nanoscale Research Letters.

[3]  Sang Jin Park,et al.  Flexible and Wavelength-Selective MoS2 Phototransistors with Monolithically Integrated Transmission Color Filters , 2017, Scientific Reports.

[4]  A. Ouerghi,et al.  Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse , 2016 .

[5]  Tania Lasanta,et al.  Interface Engineering in Hybrid Quantum Dot–2D Phototransistors , 2016 .

[6]  Michael G. Spencer,et al.  Long wavelength optical response of graphene-MoS2 heterojunction , 2016 .

[7]  Yan Zhang,et al.  In Situ Fabrication of Vertical Multilayered MoS2/Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. , 2016, Small.

[8]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[9]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[10]  Hua Xu,et al.  A self-powered graphene–MoS2 hybrid phototransistor with fast response rate and high on–off ratio , 2015 .

[11]  Q. Bao,et al.  Highly responsive MoS2 photodetectors enhanced by graphene quantum dots , 2015, Scientific Reports.

[12]  Gyuchull Han,et al.  Giant Photoamplification in Indirect‐Bandgap Multilayer MoS2 Phototransistors with Local Bottom‐Gate Structures , 2015, Advanced materials.

[13]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[14]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[15]  Su-Huai Wei,et al.  Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors , 2014 .

[16]  Jana Zaumseil,et al.  Epitaxial Growth of PbSe Quantum Dots on MoS2 Nanosheets and their Near‐Infrared Photoresponse , 2014 .

[17]  Jiwon Jeon,et al.  Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. , 2014, ACS nano.

[18]  T. Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[19]  Hua Xu,et al.  High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. , 2014, Small.

[20]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[21]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[22]  K. Novoselov,et al.  Control of radiation damage in MoS(2) by graphene encapsulation. , 2013, ACS nano.

[23]  U. Kaiser,et al.  The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene , 2013, 1310.2411.

[24]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[25]  K. Stanković,et al.  Comparative Study of Gamma Radiation Effects on Solar Cells, Photodiodes, and Phototransistors , 2013 .

[26]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[27]  Stephen J. Pearton,et al.  Radiation effects in GaN materials and devices , 2013 .

[28]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[29]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[30]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[31]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[32]  Harlan M Krumholz,et al.  Exposure to low-dose ionizing radiation from medical imaging procedures. , 2009, The New England journal of medicine.

[33]  Jianlong Wang,et al.  Application of radiation technology to sewage sludge processing: a review. , 2007, Journal of hazardous materials.

[34]  D. Tait,et al.  Systematic review, including meta-analyses, on the management of locally advanced pancreatic cancer using radiation/combined modality therapy , 2007, British Journal of Cancer.

[35]  F. Mettler,et al.  Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. , 2001, AJR. American journal of roentgenology.

[36]  B M Sutherland,et al.  Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Reichmanis,et al.  Radiation Effects on Polymeric Materials: A Brief Overview , 1993 .

[38]  Ninoslav Stojadinovic,et al.  Analysis of gamma-radiation induced instability mechanisms in CMOS transistors , 1989 .

[39]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[40]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[41]  R. C. Macridis A review , 1963 .

[42]  寛 大岩 早期関節リウマチ:brief overview , 2018 .

[43]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[44]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[45]  A. Kader Potential applications of ionizing radiation in postharvest handling of fresh fruits and vegetables , 1986 .