Multiphase models of tumour growth

[1]  L. Preziosi,et al.  Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications , 2009, Journal of mathematical biology.

[2]  C. Verdier,et al.  Fractal approach to the rheology of concentrated cell suspensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  R. Gillies,et al.  Hypoxia and adaptive landscapes in the evolution of carcinogenesis , 2007, Cancer and Metastasis Reviews.

[4]  P. Maini,et al.  Metabolic changes during carcinogenesis: potential impact on invasiveness. , 2007, Journal of theoretical biology.

[5]  M. Chaplain,et al.  Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. , 2006, Mathematical medicine and biology : a journal of the IMA.

[6]  Thomas H. Mareci,et al.  Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging , 2006, Annals of Biomedical Engineering.

[7]  E. T. Gawlinski,et al.  Acid-mediated tumor invasion: a multidisciplinary study. , 2006, Cancer research.

[8]  F. Marga,et al.  Multiple membrane tethers probed by atomic force microscopy. , 2005, Biophysical journal.

[9]  R. Foty,et al.  Biophysical measurement of brain tumor cohesion , 2005, International journal of cancer.

[10]  D Ambrosi,et al.  The role of stress in the growth of a multicell spheroid , 2004, Journal of mathematical biology.

[11]  J. Humphrey,et al.  Biological Growth and Remodeling: A Uniaxial Example with Possible Application to Tendons and Ligaments , 2003 .

[12]  H M Byrne,et al.  Mathematical modelling of comedo ductal carcinoma in situ of the breast. , 2003, Mathematical medicine and biology : a journal of the IMA.

[13]  Helen M Byrne,et al.  A multiphase model describing vascular tumour growth , 2003, Bulletin of mathematical biology.

[14]  H. M. Byrne,et al.  Modelling the early growth of ductal carcinoma in situ of the breast , 2003, Journal of mathematical biology.

[15]  Helen M. Byrne,et al.  A two-phase model of solid tumour growth , 2003, Appl. Math. Lett..

[16]  J R King,et al.  Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties. , 2003, Mathematical medicine and biology : a journal of the IMA.

[17]  H. Byrne,et al.  The role of cell-cell interactions in a two-phase model for avascular tumour growth , 2002, Journal of mathematical biology.

[18]  D. Ambrosi,et al.  On the mechanics of a growing tumor , 2002 .

[19]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[20]  L. Preziosi,et al.  On Darcy's law for growing porous media , 2002 .

[21]  Jay D. Humphrey,et al.  A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES , 2002 .

[22]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[23]  H Schindler,et al.  Cadherin interaction probed by atomic force microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Forgacs,et al.  Viscoelastic properties of living embryonic tissues: a quantitative study. , 1998, Biophysical journal.

[25]  L. Matrisian,et al.  Changing views of the role of matrix metalloproteinases in metastasis. , 1997, Journal of the National Cancer Institute.

[26]  W. Stetler-Stevenson,et al.  Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. , 1996, Seminars in cancer biology.

[27]  Kumbakonam R. Rajagopal,et al.  Mechanics of Mixtures , 1995 .

[28]  L A Taber,et al.  A nonliner poroelastic model for the trabecular embryonic heart. , 1994, Journal of biomechanical engineering.

[29]  V. Mow,et al.  Triphasic Theory for Swelling Properties of Hydrated Charged Soft Biological Tissues , 1990 .

[30]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[31]  W M Lai,et al.  Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. , 1989, Journal of biomechanical engineering.

[32]  S. Sideman,et al.  A porous-medium approach for modeling heart mechanics. I. theory , 1986 .

[33]  Charles Nicholson,et al.  Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity , 1985, Brain Research.

[34]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[35]  R. Kizek,et al.  Matrix metalloproteinases. , 2010, Current medicinal chemistry.

[36]  A. Tosin,et al.  Mathematical model of tumour cord growth along the source of nutrient , 2007 .

[37]  Luigi Preziosi,et al.  Modelling of Biological Materials , 2007 .

[38]  K. Rajagopal,et al.  Modeling of Biological Materials , 2007 .

[39]  L. Matrisian,et al.  Matrix degrading metalloproteinases , 2005, Journal of Neuro-Oncology.

[40]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation , 2005, SIAM J. Appl. Math..

[41]  C. Verdier,et al.  Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions. , 2005, Biorheology.

[42]  W M Lai,et al.  A finite deformation theory for cartilage and other soft hydrated connective tissues--I. Equilibrium results. , 1990, Journal of biomechanics.

[43]  L. Preziosi On an invariance property of the solution to stokes first problem for viscoelastic fluids , 1989 .

[44]  van Dh Dick Campen,et al.  A mixture approach to the mechanics of skin. , 1987, Journal of biomechanics.

[45]  D. Joseph,et al.  Stokes' first problem for viscoelastic fluids , 1987 .

[46]  J. Tarbell,et al.  Modeling water flow through arterial tissue. , 1987, Bulletin of mathematical biology.

[47]  A. Tsaturyan,et al.  Extracellular fluid filtration as the reason for the viscoelastic behaviour of the passive myocardium. , 1984, Journal of biomechanics.

[48]  W M Lai,et al.  Fluid transport and mechanical properties of articular cartilage: a review. , 1984, Journal of biomechanics.

[49]  G Jayaraman,et al.  Water transport in the arterial wall--a theoretical study. , 1983, Journal of biomechanics.

[50]  W M Lai,et al.  Drag-induced compression of articular cartilage during a permeation experiment. , 1980, Biorheology.

[51]  D. E. Kenyon,et al.  A mathematical model of water flux through aortic tissue. , 1979, Bulletin of mathematical biology.

[52]  Van C. Mow,et al.  Mechanics of Animal Joints , 1979 .

[53]  L. Preziosi,et al.  Tumors as Elasto-Viscoplastic Growing Bodies , 2022 .